Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11032276PMC
http://dx.doi.org/10.1007/s00787-023-02163-2DOI Listing

Publication Analysis

Top Keywords

correction systematic
4
systematic review
4
review exploring
4
exploring youth
4
youth peer
4
peer support
4
support young
4
young people
4
people mental
4
mental health
4

Similar Publications

Background: Pediatric flexible flatfoot (FFF) is a common condition characterized by the collapse of the medial longitudinal arch, which can lead to pain and functional impairment in a subset of patients. Subtalar arthroereisis (AR) is a minimally invasive procedure that corrects FFF by limiting excessive pronation of the subtalar joint. Two main techniques exist: endosinotarsal AR, which involves placing an implant in the sinus tarsi, and exosinotarsal AR, which uses a screw external to the sinus tarsi.

View Article and Find Full Text PDF

Considering the substantial inaccuracies inherent in the traditional manual identification of ceramic categories and the issues associated with analyzing ceramics based on chemical or spectral features, which may lead to the destruction of ceramics, this paper introduces a novel provenance classification of archaeological ceramics which relies on microscopic features and an ensemble deep learning model, overcoming the time consuming and require costly equipment limitations of current standard methods, and without compromising the structural integrity and artistic value of ceramics. The proposed model includes the following: the construction of a dataset for ancient ceramic microscopic images, image preprocessing methods based on Gamma correction and CLAHE equalization algorithms, extraction of image features based on three deep learning architectures-VGG-16, Inception-v3 and GoogLeNet, and optimal fusion. This latter is based on stochastic gradient descent (SGD) algorithm, which allows optimal fitting of the fusion model parameters by freezing and unfreezing model layers.

View Article and Find Full Text PDF

Applying a three-dimensional curved lumbar spine model to simulate surgery for training residents in pedicle screw insertion.

Surg Radiol Anat

December 2024

Department of Anatomy, Digital Imaging and 3D Modelling Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey.

Purpose: The challenges of spinal surgery can be overcome by deeply understanding the anatomical and surgical complexities of the region through the use of model simulators. This study investigates the impact of digitally designed simulators, specifically lumbar spinal models with abnormal curvature, on preoperative planning and their effectiveness as training tools. The study addresses challenges in spine surgery, such as unique deformities, classification issues, and associated abdominal structure abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!