Pharmacokinetic/pharmacodynamic model of a methionine starvation based anti-cancer drug.

Med Biol Eng Comput

Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France.

Published: July 2023

A new therapeutic approach against cancer is developed by the firm Erytech. This approach is based on starved cancer cells of an amino acid essential to their growth (the L-methionine). The depletion of plasma methionine level can be induced by an enzyme, the methionine-γ-lyase. The new therapeutic formulation is a suspension of erythrocytes encapsulating the activated enzyme. Our work reproduces a preclinical trial of a new anti-cancer drug with a mathematical model and numerical simulations in order to replace animal experiments and to have a deeper insight on the underlying processes. With a combination of a pharmacokinetic/pharmacodynamic model for the enzyme, substrate, and co-factor with a hybrid model for tumor, we develop a "global model" that can be calibrated to simulate different human cancer cell lines. The hybrid model includes a system of ordinary differential equations for the intracellular concentrations, partial differential equations for the concentrations of nutrients and drugs in the extracellular matrix, and individual based model for cancer cells. This model describes cell motion, division, differentiation, and death determined by the intracellular concentrations. The models are developed on the basis of experiments in mice carried out by Erytech. Parameters of the pharmacokinetics model were determined by fitting a part of experimental data on the concentration of methionine in blood. Remaining experimental protocols effectuated by Erytech were used to validate the model. The validated PK model allowed the investigation of pharmacodynamics of cell populations. Numerical simulations with the global model show cell synchronization and proliferation arrest due to treatment similar to the available experiments. Thus, computer modeling confirms a possible effect of treatment based on the decrease of methionine concentration. The main goal of the study is the development of an integrated pharmacokinetic/pharmacodynamic model for encapsulated methioninase and of a mathematical model of tumor growth/regression in order to determine the kinetics of L-methionine depletion after co-administration of Erymet product and Pyridoxine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-023-02786-2DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic/pharmacodynamic model
12
model
12
anti-cancer drug
8
cancer cells
8
l-methionine depletion
8
mathematical model
8
numerical simulations
8
hybrid model
8
model tumor
8
differential equations
8

Similar Publications

Background: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.

Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.

View Article and Find Full Text PDF

Background: Uncertainty about optimal tranexamic acid (TXA) dosage has led to significant practice variation in hip arthroplasty. We aimed to identify the optimal i.v.

View Article and Find Full Text PDF

Objectives: This study aimed to predict the impact of different infusion strategies on pharmacokinetic/pharmacodynamic (PK/PD) target attainment and the potential risk for toxicity in an ICU cohort treated with β-lactams.

Method: Using collected patient data from 137 adult ICU patients, and applying population PK models, individual PK parameters were estimated and used to predict concentrations and target attainment following cefotaxime 2 g q8h, piperacillin/tazobactam 4.5 g q6h and meropenem 1 g q8h, applying 15 min short infusions (SI), 3 h extended infusions (EI) and 24 h continuous infusion (CI).

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) poses a significant threat to global health, with millions of new infections and approximately one million deaths annually. Various modeling efforts have emerged, offering tailored data-driven and physiologically-based solutions for novel and historical compounds. However, this diverse modeling panorama may lack consistency, limiting result comparability.

View Article and Find Full Text PDF

Aims: Crovalimab is a novel C5 inhibitor administered first intravenously and then subcutaneously in patients with paroxysmal nocturnal haemoglobinuria (PNH) naive to complement inhibition or switching from eculizumab or ravulizumab. Crovalimab showed efficacy and safety comparable to eculizumab in the pivotal COMMODORE 2 and supporting studies.

Methods: We characterized crovalimab pharmacokinetics and the relationship between exposure pharmacokinetic parameters and pharmacodynamic biomarkers, efficacy and safety endpoints using pooled data (healthy volunteers [n = 9], naive [n = 210] and switched [n = 211] patients).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!