Extensive 3D mapping of dislocation structures in bulk aluminum.

Sci Rep

Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA.

Published: March 2023

Thermomechanical processing such as annealing is one of the main methods to tailor the mechanical properties of materials, however, much is unknown about the reorganization of dislocation structures deep inside macroscopic crystals that give rise to those changes. Here, we demonstrate the self-organization of dislocation structures upon high-temperature annealing in a mm-sized single crystal of aluminum. We map a large embedded 3D volume ([Formula: see text] [Formula: see text]m[Formula: see text]) of dislocation structures using dark field X-ray microscopy (DFXM), a diffraction-based imaging technique. Over the wide field of view, DFXM's high angular resolution allows us to identify subgrains, separated by dislocation boundaries, which we identify and characterize down to the single-dislocation level using computer-vision methods. We demonstrate how even after long annealing times at high temperatures, the remaining low density of dislocations still pack into well-defined, straight dislocation boundaries (DBs) that lie on specific crystallographic planes. In contrast to conventional grain growth models, our results show that the dihedral angles at the triple junctions are not the predicted 120[Formula: see text], suggesting additional complexities in the boundary stabilization mechanisms. Mapping the local misorientation and lattice strain around these boundaries shows that the observed strain is shear, imparting an average misorientation around the DB of [Formula: see text] 0.003 to 0.006[Formula: see text].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992398PMC
http://dx.doi.org/10.1038/s41598-023-30767-wDOI Listing

Publication Analysis

Top Keywords

dislocation structures
16
[formula text]
8
dislocation boundaries
8
dislocation
6
text]
5
extensive mapping
4
mapping dislocation
4
structures
4
structures bulk
4
bulk aluminum
4

Similar Publications

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Background: Open and crushed forearm injury is a complex and rare injury affecting the upper extremity. It results in damage to various structures, including bones, soft tissues, and neurovascular bundles, ultimately leading to functional impairment. Typically, these injuries occur owing to high-energy trauma.

View Article and Find Full Text PDF

The Transverse Humeral Ligament: An Anatomical Narrative Review.

Clin Anat

December 2024

Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Fukuoka, Japan.

Shoulder pain often involves the tendon of the long head of the biceps brachii (LHBT) and the transverse humeral ligament (THL). Traditionally, the THL is considered a ligament that prevents the LHBT from dislocating, but recent studies suggest that it may be part of the subscapularis tendon. This review evaluates the nature of the THL and its overlying structures.

View Article and Find Full Text PDF

Background: Bennett's fracture, a fracture-dislocation of the base of the first metacarpal, poses significant challenges due to the unique biomechanics of the thumb's carpometacarpal (CMC) joint. Effective management is critical to restoring thumb function and preventing long-term complications such as arthritis and instability.

Objective: This article provides a comprehensive overview of Bennett's fracture, including its mechanism of injury, diagnostic considerations, and management strategies, with a focus on conservative and surgical options.

View Article and Find Full Text PDF

Using an interatomic potential that can capture the tetrahedral configuration of water molecules (HO) in ice without the need to explicitly track the motion of the O and H atoms, coarse-grained (CG) atomistic simulations are performed here to characterize the structures, energy, cohesive strengths, and fracture resistance of the grain boundaries (GBs) in polycrystalline ice resulting from water freezing. Taking the symmetric tilt grain boundaries (STGBs) with a tilting axis of ⟨0001⟩ as an example, several main findings from our simulations are (i) the GB energy, , exhibits a strong dependence on the GB misorientation angle, θ. The classical Read-Shockley model only predicts the - θ relation reasonably well when θ < 20° or θ > 45° but fails when 20° < θ < 45°; (ii) two "valleys" appear in the -θ landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!