The surface ligands of nanoparticles (NPs) play essential roles in material synthesis, properties, and applications. Chiral molecules have been the new hot topic in tuning the properties of inorganic NPs. Herein, l-arginine- and d-arginine-stabilized ZnO NPs were prepared, and the TEM, UV-vis, and PL spectra were investigated, which demonstrated that the l-arginine and d-arginine have different effects on the self-assembly and photoluminescence properties of ZnO NPs, showing an evident chiral effect. Furthermore, the results of the cell viability assays, plate counting method, and bacterial SEM images showed that ZnO@LA possessed lower biocompatibility and higher antibacterial efficiency than those of ZnO@DA, implying that the chiral molecules on the surface of nanomaterials may affect their bioproperties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c00114 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Science and Technology, Nottingham Trent University, Nottingham, Clifton Lane NG11 8NS, U.K.
We report the synthesis of three radical-cation salts of BEDT-TTF from racemic tris(oxalato)ferrate by electrocrystallization in the presence of chiral molecules. In the presence of enantiopure l-(+)-tartaric acid, we observe spontaneous resolution of the labile tris(oxalato)ferrate anion to produce the chiral radical-cation salt α-(BEDT-TTF)[Δ-Fe(CO)].[l-(+)-tartaric acid] which contains only the Δ enantiomer of Fe(CO).
View Article and Find Full Text PDFACS Nano
January 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.
Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.
Sci Rep
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland.
The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!