The three possible 1-(n-pyridinyl)butane-1,3-diones (nPM) have been synthesized. Structures, tautomerism, and conformations are investigated by means of DFT calculations. H and C NMR spectra are assigned, and deuterium isotope effects on C chemical shifts have been measured. Analysis of the isotope effects leads to the equilibrium constants of the keto-enol tautomers. Some interesting differences are seen between the three compounds and the phenyl analogs. The isotope effects can also rank the hydrogen bonds of the compounds, with the one with nitrogen in the three positions of the pyridine ring as the weakest. Structures, conformers, energies, and NMR nuclear shieldings are calculated using DFT calculations at the B3LYP/6-311++G(d,p) level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrc.5342DOI Listing

Publication Analysis

Top Keywords

isotope effects
12
dft calculations
8
tautomerism pyridinylbutane-13-diones
4
pyridinylbutane-13-diones nmr
4
nmr dft
4
dft study
4
study three
4
three 1-n-pyridinylbutane-13-diones
4
1-n-pyridinylbutane-13-diones npm
4
npm synthesized
4

Similar Publications

An aryl radical assay is used to provide information about the formation of aryl radicals from aryl halides in coupling reactions to arenes in the presence of palladium sources and under LED irradiation (λ = 456 nm). The assay uses 2-halo--xylenes as substrates. Aryl radical formation is indicated both by a defined product composition and by signature deuterium isotope effects.

View Article and Find Full Text PDF

Purpose: None of the antibody-drug conjugates (ADCs) targeting Claudin 18.2 (CLDN18.2) have received approval from regulatory authorities due to their limited clinical benefits.

View Article and Find Full Text PDF

Measuring the Stable Isotope Composition of Water in Brine from Halite Fluid Inclusions and Borehole Brine Seeps Using Cavity Ring-Down Spectroscopy.

ACS Earth Space Chem

January 2025

Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Naturally occurring bedded salt deposits are considered robust for the permanent disposal of heat-generating nuclear waste due to their unique physical and geological properties. The Brine Availability Test in Salt (BATS) is a US-DOE Office of Nuclear Energy funded project that uses heated borehole experiments underground (∼655 meters depth) at the Waste Isolation Pilot Plant (WIPP) in the bedded salt deposits of the Salado Formation to investigate the capacity for safe disposal of high-level, heat generating nuclear waste in salt. Uncertainties associated with brine mobility near heat-generating waste motivates the need to characterize the processes and sources of brine in salt deposits.

View Article and Find Full Text PDF

Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements.

Acc Chem Res

January 2025

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.

View Article and Find Full Text PDF

Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!