Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cadmium pollution in Moso bamboo forests poses a potential threat to the sustainable development of the bamboo industry. However, the effects of cadmium toxicity on Moso growth and its mechanisms of adaptation to cadmium stress are poorly understood. In this study, the physiological and transcriptional response of Moso to cadmium stress was investigated in detail using Moso seedlings in a hydroponic system. Cadmium toxicity severely inhibited the growth of roots but had little effect on biomass accumulation in the aerial parts. Cadmium accumulation in roots and aerial parts increased as external cadmium increased, with cadmium mainly localized in the epidermis and pericycle cells in the roots. The uptake and root-to-shoot translocation of cadmium was stimulated, but the photosynthetic process was suppressed under cadmium stress. A total of 3469 differentially expressed genes were identified from the transcriptome profile and those involved in cadmium uptake, transportation and detoxification were analyzed as candidates for having roles in adaptation to cadmium stress. The results suggested that Moso is highly efficient in cadmium uptake, xylem loading and translocation, as well as having a high capacity for cadmium accumulation. This work also provided basic information on physiological and transcriptional responses of Moso to cadmium toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpad028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!