The term "thin basement membrane" (TBM) refers to a glomerular disorder characterized by diffuse uniform thinning of the glomerular basement membrane (GBM) on electron microscopy. Patients with TBM usually show an isolated hematuria with excellent renal prognosis. However, some patients can develop proteinuria and progressive kidney dysfunction in the long term. Most patients with TBM are heterozygous for pathogenic variants in genes encoding for both the α3 and α4 chains of collagen IV, a major constituent of GBM. Such variants are responsible for a wide range of clinical and histological phenotypes. The differential diagnosis between TBM and autosomal-dominant Alport syndrome and IgA nephritis (IGAN) may be difficult in some cases. Patients who progress to chronic kidney disease may show clinicopathologic features similar to those of primary focal and segmental glomerular sclerosis (FSGS). Without a shared classification of these patients, the risk of misdiagnosis and/or underestimation of the risk of progressive kidney disease is real. New efforts are needed to understand the determinants of renal prognosis and recognize the early signs of renal deterioration, allowing a custom-made diagnosis and therapeutic approach. For this purpose, a practical and simple clinical approach is supplied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000528243 | DOI Listing |
Int Ophthalmol
January 2025
Department of Ophthalmology, Central Theater General Hospital, 627 Wuluo Road, Wuhan, 430070, China.
Purpose: The purpose is to evaluate the effect of drainage from intentional extramacular holes after internal limiting membrane insertion to treat macular hole retinal detachment (MHRD) in highly myopic eyes.
Methods: This study is a retrospective, observational, and comparative case series that included 25 consecutive highly myopic eyes with MHRD. All eyes underwent standard 23-gauge vitrectomy, inverted internal limiting membrane insertion into the macular hole, subretinal fluid drainage from an intentionally created extramacular retinal hole, and tamponade with either silicone oil (SO group, n = 13) or perfluoropropane (CF group, n = 12).
Biochem Biophys Res Commun
January 2025
Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.
View Article and Find Full Text PDFPathol Res Pract
January 2025
Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China.
Anti-vascular endothelial growth factor-associated thrombotic microangiopathy (aVEGF-TMA) was recently discovered in patients with malignant tumors. Four aVEGF-TMA patients diagnosed by renal biopsy between 2018 and 2022 were identified, and all were females aged 30-62 years (mean age, 47 years). Two patients with malignant gastrointestinal stromal tumors who received sunitinib were analyzed.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Immunodermatology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Masovian, Poland.
Linear IgA bullous dermatosis (LABD) is a rare subepidermal blistering disorder characterized by the presence of linear IgA deposits at the basement membrane zone (BMZ) by direct immunofluorescence (DIF). This entity was first described by Chorzelski and Jablonska from Warsaw Center of Bullous Diseases, Poland. The disease affects children and adults, whereby they differ in terms of clinical picture and course.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!