Lectins are important biological tools for binding glycans, but recombinant protein expression poses challenges for some lectin classes, limiting the pace of discovery and characterization. To discover and engineer lectins with new functions, workflows amenable to rapid expression and subsequent characterization are needed. Here, we present bacterial cell-free expression as a means for efficient, small-scale expression of multivalent, disulfide bond-rich, rhamnose-binding lectins. Furthermore, we demonstrate that the cell-free expressed lectins can be directly coupled with bio-layer interferometry analysis, either in solution or immobilized on the sensor, to measure interaction with carbohydrate ligands without purification. This workflow enables the determination of lectin substrate specificity and estimation of binding affinity. Overall, we believe that this method will enable high-throughput expression, screening, and characterization of new and engineered multivalent lectins for applications in synthetic glycobiology.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwad018DOI Listing

Publication Analysis

Top Keywords

cell-free expression
8
rhamnose-binding lectins
8
bio-layer interferometry
8
lectins
6
expression
5
characterization
4
expression characterization
4
characterization multivalent
4
multivalent rhamnose-binding
4
lectins bio-layer
4

Similar Publications

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

The intervention of B. longum metabolites in Fnevs' carcinogenic capacity: A potential double-edged sword.

Exp Cell Res

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China. Electronic address:

Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Fusobacterium nucleatum and its metabolites are effective biological targets for colon cancer promotion. Probiotics such as Bifidobacterium can block the occurrence and development of CRC by regulating the host intestinal mucosal immunity, eliminating carcinogens, and interfering with tumor cell proliferation and apoptosis.

View Article and Find Full Text PDF

P-Glycoprotein Drives Glioblastoma Survival and Chemotherapy Resistance: Potential as a Promising Liquid Biopsy Biomarker.

Am J Pathol

January 2025

Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil. Electronic address:

Drug resistance is a major challenge in cancer therapy, and the expression of efflux pumps such as P-glycoprotein (P-gp, ABCB1) often correlates with poor prognosis in various tumors, including glioblastoma (GB). Considering that different roles for these proteins have been established in the biology of various tumors, this study aimed to investigate the functions of P-gp in GB-derived cells by evaluating its survival, migratory, and apoptosis-regulating capabilities, as well as its potential as a liquid biopsy biomarker. P-gp expression was diminished via siRNA to determine its exact role in GB biology.

View Article and Find Full Text PDF

The reasons for the low frequency of anti-Ro/SS-A antibody in patients with HTLV-1-associated myelopathy complicated with Sjögren's syndrome (SS) are unclear. In this study, we investigated whether HTLV-1-infected T cells can act directly on B cells and suppress B cells' production of antibodies, including anti-Ro/SS-A antibody. For this purpose, we established an in vitro T-cell-free B-cell antibody production system.

View Article and Find Full Text PDF

This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!