A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined effects of microplastics and warming enhance algal carbon and nitrogen storage. | LitMetric

Combined effects of microplastics and warming enhance algal carbon and nitrogen storage.

Water Res

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Published: April 2023

Algae dominate primary production in groundwater and oceans and play a critical role in global carbon dioxide fixation and climate change but are threatened by ongoing global warming events (such as heatwaves) and increasing microplastic (MP) pollution. However, whether and how ecologically important phytoplankton respond to the combined effects of warming and MPs remain poorly understood. We thus investigated the combined effects of these factors on carbon and nitrogen storage and the mechanisms underlying the alterations in the physiological performance of a model diatom, Phaeodactylum tricornutum, exposed to a warming stressor (25 °C compared with 21 °C) and polystyrene MP acclimation. Although warmer conditions decreased the cell viability, the diatoms subjected to the synergistic effects of MPs and warming showed significant increases in the growth rate (1.10-fold) and nitrogen uptake rate (1.26-fold). Metabolomics and transcriptomic analyses revealed that MPs and warming mainly promoted fatty acid metabolism, the urea cycle, glutamine and glutamate production, and the tricarboxylic acid (TCA) cycle due to an increased level of 2-oxoglutarate, which is the hub of carbon and nitrogen metabolism and accounts for the acquisition and utilization of carbon and nitrogen. Our findings emphasize the nonnegligible effects of MPs and HWs on the algal carbon and nitrogen cycles in waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.119815DOI Listing

Publication Analysis

Top Keywords

carbon nitrogen
20
combined effects
12
algal carbon
8
nitrogen storage
8
effects mps
8
mps warming
8
warming
6
carbon
6
nitrogen
6
effects microplastics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!