Degradation of antibiotic amoxicillin from pharmaceutical industry wastewater into a continuous flow reactor using supercritical water gasification.

Water Res

Universidade Federal de Goias (UFG), Instituto de Química, Av. Esperança s/n, Campus Samambaia, Goiania, Goias CEP 74690-900, Brazil. Electronic address:

Published: May 2023

In recent years the concern with emerging pollutants in water has become more prominent, especially pharmaceutical residues, such as antibiotics due to the influence to increase antibacterial resistance. Further, conventional wastewater treatment methods have not demonstrated efficiency for the complete degradation of these compounds, or they have limitations to treat a large volume of waste. In this sense, this study aims to investigate the degradation of amoxicillin, one of the most prescribed antibiotics, in wastewater via supercritical water gasification (SCWG) using a continuous flow reactor. For this purpose, the process operating conditions of temperature, feed flow rate, and concentration of HO was evaluated using Experimental Design and Response Surface Methodology techniques and optimized by Differential Evolution methodology. Total organic carbon (TOC) removal, chemical oxygen demand (COD) degradability, reaction time, amoxicillin degradation rate, toxicity of degradation by-products, and gaseous products were evaluated. The use of SCWG for treatment achieved 78.4% of the TOC removal for the industrial wastewater. In the gaseous products, hydrogen was the majority component. Furthermore, high-performance liquid chromatography analyses demonstrated that the antibiotic amoxicillin was degraded. For a mass flow rate of 15 mg/min of amoxicillin fed into the reaction system, 14.4 mg/min was degraded. Toxicity tests with microcrustacean Artemia salina showed slight toxicity to treated wastewater. Despite that, the outcomes reveal the SCWG has great potential to degrade amoxicillin and may be applied to treat several pharmaceutical pollutants. Aside from this, carbon-rich effluents may lead to a significant energy gaseous product, especially, hydrogen and syngas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.119826DOI Listing

Publication Analysis

Top Keywords

antibiotic amoxicillin
8
continuous flow
8
flow reactor
8
supercritical water
8
water gasification
8
flow rate
8
toc removal
8
gaseous products
8
amoxicillin
6
degradation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!