Metal halide perovskite quantum dots (QDs) have excellent optoelectronic properties; however, their poor stability under water or thermal conditions remains an obstacle to commercialization. Here, we used a carboxyl functional group (-COOH) to enhance the ability of a covalent organic framework (COF) to adsorb lead ions and grow CHNHPbBr(MAPbBr) QDsinto a mesoporous carboxyl-functionalized COF to construct MAPbBrQDs@COF core-shell-like composites to improve the stability of perovskites. Owing to the protection of the COF, the as-prepared composites exhibited enhanced water stability, and the characteristic fluorescence was maintained for more than 15 d. These MAPbBrQDs@COF composites can be used to fabricate white light-emitting diodes with a color comparable to natural white emission. This work demonstrates the importance of functional groups for thegrowth of perovskite QDs, and coating with a porous structure is an effective way to improve the stability of metal halide perovskites.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/acc1ecDOI Listing

Publication Analysis

Top Keywords

perovskite quantum
8
organic framework
8
enhanced water
8
water stability
8
stability metal
8
metal halide
8
improve stability
8
stability
5
growth strategy
4
strategy construct
4

Similar Publications

Neuron-inspired CsPbBr/PDMS nanospheres for multi-dimensional sensing and interactive displays.

Light Sci Appl

January 2025

National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, 350108, Fuzhou, China.

Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses.

View Article and Find Full Text PDF

We successfully synthesized perovskite-type RbTaO at 1173 K under 4 GPa. RbTaO crystalized as a cubic system (3̄ space group (SG), = 4.04108(3) Å) at 300 K in contrast to the orthorhombic perovskite-type RbNbO prepared under the same conditions.

View Article and Find Full Text PDF

Application of advanced quantum dots in perovskite solar cells: synthesis, characterization, mechanism, and performance enhancement.

Mater Horiz

January 2025

Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs.

View Article and Find Full Text PDF

Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI Perovskite Light-Emitting Diodes.

Nano Lett

January 2025

School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.

Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.

View Article and Find Full Text PDF

Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!