A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Methyl Jasmonate on the Biosynthesis of Volatile Compounds Associated with the Ripening of Grape Tomato Fruits. | LitMetric

Effect of Methyl Jasmonate on the Biosynthesis of Volatile Compounds Associated with the Ripening of Grape Tomato Fruits.

J Agric Food Chem

Department of Food and Experimental Nutrition, NAPAN/FoRC - Food Research Center, University of São Paulo, School of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, Butantã, São Paulo, São Paulo CEP 05508-000, Brazil.

Published: March 2023

The present work aims to evaluate the roles of methyl jasmonate (MeJA) in the formation of volatile organic compounds (VOC) from grape tomatoes during ripening. Fruits were treated with MeJA, ethylene, 1-MCP (1-methylcyclopropene), and MeJA+1-MCP, with analyses of the VOC and levels of the gene transcripts for the enzymes lipoxygenase (LOX), alcohol dehydrogenase (ADH), and hydroperoxide lyase (HPL). An intimate relationship between MeJA and ethylene in aroma formation was detected, mainly among the VOC from the carotenoid pathway. Expression of the fatty acid transcripts, , , and pathway genes, was reduced by 1-MCP, even when associated with MeJA. In ripe tomato, MeJA increased most of the volatile C6 compounds, except 1-hexanol. The MeJA+1-MCP treatment followed most of the increases in volatile C6 compounds that were increased by MeJA alone, which evidenced some ethylene-independent mechanism in the production of the volatile C6 compounds. In ripe tomato, MeJA and MeJA+1-MCP increased the levels of 6-methyl-5-hepten-2-one, which is derived from lycopene, evidencing an ethylene-independent biosynthetic process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c06215DOI Listing

Publication Analysis

Top Keywords

volatile compounds
16
methyl jasmonate
8
meja ethylene
8
ripe tomato
8
tomato meja
8
meja
7
volatile
5
compounds
5
jasmonate biosynthesis
4
biosynthesis volatile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!