Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To verify the hypothesis about the preservation of signs of radiation-induced genomic instability at the flowering stage of the chamomile plant after pre-sowing seed irradiation, the interaction of dose-dependent changes in the level of DNA damage and stimulation of antioxidant production.
Materials And Methods: The study was carried out on two genotypes of chamomile, Perlyna Lisostepu variety and its mutant, using pre-sowing seed radiation exposure at dose levels 5-15 Gy. Studies of the rearrangement of the primary DNA structure of under different doses were studied on plant tissues at the flowering stage using - ISSR and RAPD DNA markers. Dose-dependent changes relative to the control of the amplicons' spectra were analyzed using the Jacquard similarity index. Antioxidants such as flavonoids and phenols were isolated from pharmaceutical raw materials (inflorescences) using traditional methods.
Results: Preservation of multiple DNA damages at the stage of plant flowering under pre-sowing seed irradiation at low doses was confirmed. It was found that the largest rearrangements of the primary DNA structure of both genotypes, manifested in reduced similarity with the control spectra of amplicons, were observed under irradiation dose levels 5-10 Gy. There was a tendency to approach this indicator to the control under 15 Gy dose, which means increasing efficiency of the reparative processes. The relationship between the polymorphism of the primary structure of DNA by ISSR-RAPD-markers in different genotypes and the nature of its rearrangement under radiation exposure was shown. Dose dependences of changes in the specific content of antioxidants were non-monotonic with a maximum at 5-10 Gy.
Conclusions: Comparison of dose dependences of changes in the coefficient of similarity of the spectrum of amplicons between irradiated and control variants with nonmonotonic dose curves in the specific content of antioxidants allowed to suggest that there was the antioxidant protection stimulation under the doses corresponding to low efficiency of repair processes. The decrease in the specific content of antioxidants followed the restoration of the genetic material normal state. The interpretation of the identified phenomenon has been based on both known connection between the effects of genomic instability and the increasing yield of the reactive oxygen species and general principles of antioxidant protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09553002.2023.2188934 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!