Nickel-iron catalysts represent an appealing platform for electrocatalytic oxygen evolution reaction (OER) in alkaline media because of their high adjustability in components and activity. However, their long-term stabilities under high current density still remain unsatisfactory due to undesirable Fe segregation. Herein, a nitrate ion (NO ) tailored strategy is developed to mitigate Fe segregation, and thereby improve the OER stability of nickel-iron catalyst. X-ray absorption spectroscopy combined with theoretical calculations indicate that introducing Ni (NO ) (OH) with stable NO in the lattice is conducive to constructing the stable interface of FeOOH/Ni (NO ) (OH) via the strong interaction between Fe and incorporated NO . Time of flight secondary ion mass spectrometry and wavelet transformation analysis demonstrate that the NO tailored nickel-iron catalyst greatly alleviates Fe segregation, exhibiting a considerably enhanced long-term stability with a six-fold improvement over FeOOH/Ni(OH) without NO modification. This work represents a momentous step toward regulating Fe segregation for stabilizing the catalytic performances of nickel-iron catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202300347DOI Listing

Publication Analysis

Top Keywords

nickel-iron catalysts
12
nickel-iron catalyst
8
segregation
5
nickel-iron
5
oxyanion engineering
4
engineering suppressed
4
suppressed iron
4
iron segregation
4
segregation nickel-iron
4
catalysts stable
4

Similar Publications

Mixed-metal nickel-iron, NiFe materials draw attention as affordable earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Here, nickel and mixed-metal nickel-iron metal-organic framework (MOF) composites with the carbon materials ketjenblack (KB) or carbon nanotubes (CNT) were synthesized in situ in a one-pot solvothermal reaction. As a direct comparison to these in situ synthesized composites, the neat MOFs were postsynthetically mixed by grinding with KB or CNT, to generate physical mixture composites.

View Article and Find Full Text PDF

Spin Magnetic Effect Activate Dual Site Intramolecular O─O Bridging for Nickel-Iron Hydroxide Enhanced Oxygen Evolution Catalysis.

Adv Sci (Weinh)

January 2025

Institution Faculty of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China.

The oxygen evolution reaction (OER) involves the recombination of diamagnetic hydroxyl (OH) or water (HO) into the paramagnetic triplet state of oxygen (O). The spin conservation of oxygen intermediates plays a crucial role in OER, however, research on spin dynamics during the catalytic process remains in its early stages. Herein, β-Ni(OH) and Fe-doped β-Ni(OH) (NiFe(OH)) are utilized as model catalysts to understand the mechanism of spin magnetic effects at iron (III) sites during OER.

View Article and Find Full Text PDF

We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

Article Synopsis
  • The study focuses on creating effective and affordable electrocatalysts for water electrolysis, vital for improving technology in this area.
  • The authors developed a novel catalyst by anchoring carbonyl iron powder in nickel foam, leading to enhanced surface area and efficient ion movement.
  • The catalyst exhibits high activity due to a dynamic interaction between different nickel and iron phases, significantly boosting its performance in the oxygen evolution reaction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!