Nickel-iron catalysts represent an appealing platform for electrocatalytic oxygen evolution reaction (OER) in alkaline media because of their high adjustability in components and activity. However, their long-term stabilities under high current density still remain unsatisfactory due to undesirable Fe segregation. Herein, a nitrate ion (NO ) tailored strategy is developed to mitigate Fe segregation, and thereby improve the OER stability of nickel-iron catalyst. X-ray absorption spectroscopy combined with theoretical calculations indicate that introducing Ni (NO ) (OH) with stable NO in the lattice is conducive to constructing the stable interface of FeOOH/Ni (NO ) (OH) via the strong interaction between Fe and incorporated NO . Time of flight secondary ion mass spectrometry and wavelet transformation analysis demonstrate that the NO tailored nickel-iron catalyst greatly alleviates Fe segregation, exhibiting a considerably enhanced long-term stability with a six-fold improvement over FeOOH/Ni(OH) without NO modification. This work represents a momentous step toward regulating Fe segregation for stabilizing the catalytic performances of nickel-iron catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202300347 | DOI Listing |
Molecules
January 2025
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
Mixed-metal nickel-iron, NiFe materials draw attention as affordable earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Here, nickel and mixed-metal nickel-iron metal-organic framework (MOF) composites with the carbon materials ketjenblack (KB) or carbon nanotubes (CNT) were synthesized in situ in a one-pot solvothermal reaction. As a direct comparison to these in situ synthesized composites, the neat MOFs were postsynthetically mixed by grinding with KB or CNT, to generate physical mixture composites.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institution Faculty of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China.
The oxygen evolution reaction (OER) involves the recombination of diamagnetic hydroxyl (OH) or water (HO) into the paramagnetic triplet state of oxygen (O). The spin conservation of oxygen intermediates plays a crucial role in OER, however, research on spin dynamics during the catalytic process remains in its early stages. Herein, β-Ni(OH) and Fe-doped β-Ni(OH) (NiFe(OH)) are utilized as model catalysts to understand the mechanism of spin magnetic effects at iron (III) sites during OER.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy.
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!