Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The limited axon regeneration capacity of mature neurons often leads to insufficient functional recovery after damage to the central nervous system (CNS). To promote CNS nerve repair, there is an urgent need to understand the regeneration machinery in order to develop effective clinical therapies. To this aim, we developed a Drosophila sensory neuron injury model and the accompanying behavioral assay to examine axon regeneration competence and functional recovery after injury in the peripheral and central nervous systems. Specifically, we used a two-photon laser to induce axotomy and performed live imaging to assess axon regeneration, combined with the analysis of the thermonociceptive behavior as a readout of functional recovery. Using this model, we found that the RNA 3'-terminal phosphate cyclase (Rtca), which acts as a regulator for RNA repair and splicing, responds to injury-induced cellular stress and impedes axon regeneration after axon breakage. Here we describe how we utilize our Drosophila model to assess the role of Rtca during neuroregeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621735 | PMC |
http://dx.doi.org/10.1007/978-1-0716-3012-9_22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!