Our previous screening efforts with colorectal cancer cell lines suggested potential cannabinoid therapeutic leads for other solid cancers. The aim of this study was to identify cannabinoid lead compounds that have cytostatic and cytocidal activities against prostate and pancreatic cancer cell lines and profile cellular responses and molecular pathways of select leads. A library of 369 synthetic cannabinoids was screened against 4 prostate and 2 pancreatic cancer cell lines with 48 h of exposure at 10 μM in medium with 10% fetal bovine serum using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability assay. Concentration titration of the top 6 hits was carried out to identify their concentration-response patterns and calculate IC values. Three select leads were examined for cell cycle, apoptosis, and autophagy responses. The role of cannabinoid receptors (CB and CB) and noncanonical receptors in apoptosis signaling was examined with selective antagonists. Two independent screening experiments in each cell line detected growth inhibitory activities against all six or a majority of cancer cell lines for HU-331 (a known cannabinoid topoisomerase II inhibitor), (±)5-epi-CP55,940, and PTI-2, each previously identified in our colorectal cancer study. 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 were novel hits. Morphologically and biochemically, (±)5-epi-CP55,940 elicited caspase-mediated apoptosis of PC-3-luc2 (a PC-3 subline with luciferase) prostate cancer and Panc-1 pancreatic cancer cell lines, each the most aggressive of the respective organ site. The apoptosis induced by (±)5-epi-CP55,940 was abolished by the CB antagonist, SR144528, but not modulated by the CB antagonist, rimonabant, and GPR55 antagonist, ML-193, nor TRPV antagonist, SB-705498. In contrast, 5-fluoro NPB-22 and FUB-NPB-22 did not cause substantial apoptosis in either cell line, but resulted in cytosolic vacuoles and increased LC3-II formation (suggestive of autophagy) and S and G/M cell cycle arrests. Combining each fluoro compound with an autophagy inhibitor, hydroxychloroquine, enhanced the apoptosis. 5-Fluoro NPB-22, FUB-NPB-22, and LY2183240 represent new leads against prostate and pancreatic cancer cells in addition to the previously reported compounds, HU-331, (±)5-epi-CP55,940, and PTI-2. Mechanistically, the two fluoro compounds and (±)5-epi-CP55,940 differed regarding their structures, CB receptor involvement, and death/fate responses and signaling. Safety and antitumor efficacy studies in animal models are warranted to guide further R&D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/can.2022.0270 | DOI Listing |
Am J Case Rep
December 2024
Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China.
Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.
View Article and Find Full Text PDFCell Death Differ
December 2024
Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA.
Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.
The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!