The gut-brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic-pituitary-adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut-microbiota-brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ene.15767 | DOI Listing |
Nord J Psychiatry
January 2025
Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.
Purpose: Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental condition that affects approximately 5% of the pediatric population, with increased prevalence among those with type 1 diabetes (T1D). Reports suggest that unrecognized and untreated ADHD impairs T1D control and that ADHD may be underdiagnosed in the Polish population. The International Society for Pediatric and Adolescent Diabetes recommends neurodevelopmental assessments in children with T1D, but specific guidelines on procedures and implementation are lacking.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy.
Background: The metabolism of plasma amino acid (AA) in children with autism spectrum disorder (ASD) has been extensively investigated, yielding inconclusive results. This study aims to characterize the metabolic alterations in AA profiles among early-diagnosed children with ASD and compare the findings with those from non-ASD children.
Methods: We analyzed plasma AA profiles, measured by ion exchange chromatography, from 1242 ASD children (median age = 4 years; 81% male).
Pharmaceuticals (Basel)
December 2024
Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.
: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK.
A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Epileptology, University Hospital Bonn (UKB), 53127 Bonn, Germany.
In light of the growing interest in the bidirectional relationship between epilepsy and dementia, this review aims to provide an overview of the role of hyperphosphorylated tau (pTau) in cognition in human epilepsy. A literature search identified five relevant studies. All of them examined pTau burden in surgical biopsy specimens from patients with temporal lobe epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!