Since many advanced applications require specific assemblies of nanoparticles (NPs), considerable efforts have been made to fabricate nanoassemblies with specific geometries. Although nanoassemblies can be fabricated through top-down approaches, recent advances show that intricate nanoassemblies can also be obtained through self-assembly, mediated for example by DNA strands. Here, we show, through extensive molecular dynamics simulations, that highly ordered self-assemblies of NPs can be mediated by their adhesion to lipid vesicles (LVs). Specifically, Janus NPs are considered so that the amount by which they are wrapped by the LV is controlled. The specific geometry of the nanoassembly is the result of effective curvature-mediated repulsion between the NPs and the number of NPs adhering to the LV. The NPs are arranged on the LV into polyhedra which satisfy the upper limit of Euler's polyhedral formula, including several deltahedra and three Platonic solids, corresponding to the tetrahedron, octahedron, and icosahedron.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm01693aDOI Listing

Publication Analysis

Top Keywords

lipid vesicles
8
nps
6
vesicles induced
4
induced ordered
4
nanoassemblies
4
ordered nanoassemblies
4
nanoassemblies janus
4
janus nanoparticles
4
nanoparticles advanced
4
advanced applications
4

Similar Publications

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs).

View Article and Find Full Text PDF

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion.

Trends Cell Biol

December 2024

Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France. Electronic address:

Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!