Antibody development to identify components of IIS and mTOR signaling pathways in lepidopteran species, a set of non-model insects.

MicroPubl Biol

School of the Earth, Ocean & Environment and Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States.

Published: February 2023

Nutritional stress impacts many insect species that have differing reproductive strategies and life histories, yet it is unclear how nutrient-sensing signaling pathways mediate tissue-specific responses to changes in dietary input. In , insulin/insulin-like growth factor (IIS) and mTOR-mediated signaling within adipocytes regulates oogenesis. To facilitate comparative study of nutrient-sensing pathway activity in the fat body, we developed antibodies to assess IIS (anti-FOXO) and mTOR signaling (anti-TOR) across three nymphalid species (Lepidoptera). By optimizing whole-mount fat body immunostaining, we find FOXO nuclear enrichment in adult adipocytes, like that observed in . Additionally, we show a previously uncharacterized TOR localization pattern in the fat body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984946PMC
http://dx.doi.org/10.17912/micropub.biology.000755DOI Listing

Publication Analysis

Top Keywords

fat body
12
mtor signaling
8
signaling pathways
8
antibody development
4
development identify
4
identify components
4
components iis
4
iis mtor
4
signaling
4
pathways lepidopteran
4

Similar Publications

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonists (GLP1RAs) are widely used in manageing type 2 diabetes mellitus and weight control. Their potential in treating ageing-related diseases has been gaining attention in recent years. However, the long-term effects of GLP1RAs on these diseases have yet to be fully revealed.

View Article and Find Full Text PDF

Aim: Time-restricted eating (TRE) limits the time for food intake to typically 6-10 h/day without other dietary restrictions. The aim of the RESET2 (the REStricted Eating Time in the treatment of type 2 diabetes) trial is to investigate the effects on glycaemic control (HbA) and the feasibility of a 1-year TRE intervention in individuals with overweight/obesity and type 2 diabetes. The aim of the present paper is to describe the protocol for the RESET2 trial.

View Article and Find Full Text PDF

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!