AI Article Synopsis

  • The study investigates organic pollutants in human brain tissue and tumors, highlighting the need for improved analytical methods to identify a variety of chemicals.
  • It proposes a new robust and simple methodology involving solid-liquid extraction, solid-phase extraction clean-up, and LC-HRMS analysis to screen a wide range of organic chemicals.
  • Performance evaluations using 66 different chemicals showed satisfactory quality control results, indicating the effectiveness of the extraction technique with a good recovery rate and manageable matrix effects.

Article Abstract

Little is known about the presence of organic pollutants in human brain (and even less in brain tumors). In this regard, it is necessary to develop new analytical protocols capable of identifying a wide range of exogenous chemicals in this type of samples (by combining target, suspect and non-target strategies). These methodologies should be robust and simple. This is particularly challenging for solid samples, as reliable extraction and clean-up techniques should be combined to obtain an optimal result. Hence, the present study focuses on the development of an analytical methodology that allows the screening of a wide range of organic chemicals in brain and brain tumor samples. This protocol was based on a solid-liquid extraction based on bead beating, solid-phase extraction clean-up with multi-layer mixed-mode cartridges, reconstitution and LC-HRMS analysis. To evaluate the performance of the extraction methodology, a set of 66 chemicals (e.g., pharmaceuticals, biocides, or plasticizers, among others) with a wide range of physicochemical properties was employed. Quality control parameters (i.e., linear range, sensitivity, matrix effect (ME%), and recoveries (R%)) were calculated and satisfactory results were obtained for them (e.g., R% within 60-120% for 32 chemicals, or ME% higher than 50% (signal suppression) for 79% of the chemicals).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984680PMC
http://dx.doi.org/10.1016/j.mex.2023.102069DOI Listing

Publication Analysis

Top Keywords

wide range
12
organic pollutants
8
brain brain
8
extraction clean-up
8
brain
5
extraction
5
chemicals
5
tumoral normal
4
normal brain
4
brain tissue
4

Similar Publications

Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields.

View Article and Find Full Text PDF

The self in pain.

Curr Opin Psychol

December 2024

Psychology Department, Uppsala University, Uppsala, Sweden.

Chronic pain can be highly distressing, disabling and complex. The experience of living with chronic pain often leads to a fundamental struggle with one's sense of self and identity. In this article, we briefly review the wide range of conceptualisations of self in pain research.

View Article and Find Full Text PDF

Polyvinyl chloride (PVC), a commonly used plastic across Europe, poses a number of risks at various stages of its life cycle. The carcinogenicity of PVC monomer, the need to use high number and volume of problematic additives, the easiness of fragmentation compared to other thermoplastics, the high volume of use in everyday products and the resulting extent to which European population is potentially exposed to both microplastics and chemicals and, finally, continuous problems during waste management, have raised concerns about impacts of PVC on human health and the environment for decades. As far back as in 2000, the European Commission recognized that PVC causes a wide range of serious problems for the environment and human health.

View Article and Find Full Text PDF

Biosurfactants: A review of different strategies for economical production, their applications and recent advancements.

Adv Colloid Interface Sci

January 2025

Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India. Electronic address:

Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost.

View Article and Find Full Text PDF

Detection of zearalenone by electrochemical aptasensor based on enzyme-assisted target recycling and DNAzyme release strategy.

Talanta

January 2025

College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, Baoding, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China. Electronic address:

Zearalenone has a high level of detection and exceedance in cereals and by-products. Herein, an electrochemical aptasensor for ZEN detection was proposed. The selected aptamer, which has a high affinity for ZEN, serves as a molecular recognition element and effectively avoids interference from other toxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!