Rational design and synthesis of catalytically active two-dimensional (2D) materials with an abundance of atomically precise active sites in their basal planes remains a great challenge. Here, we report a ligand exchange strategy to exfoliate bulk [Cu(OH)][OS(CH)SO] cuprate crystals into atomically thin 2D cuprate layers ([Cu(OH)]). The basal plane of 2D cuprate layers contains periodic arrays of accessible unsaturated Cu(II) single sites (2D-CuSSs), which are found to promote efficient oxidative Chan-Lam coupling. Our mechanistic studies reveal that the reactions proceed via coordinatively unsaturated CuO(II) single sites with the formation of Cu(I) species in the rate-limiting step, as corroborated by both operando experimental and theoretical studies. The robust stability of 2D-CuSSs in both batch and continuous flow reactions, coupled with their recyclability and good performance in complex molecule derivatization, render 2D-CuSSs attractive catalyst candidates for broad utility in fine chemical synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985158 | PMC |
http://dx.doi.org/10.1093/nsr/nwac100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!