Influence network model uncovers relations between biological processes and mutational signatures.

Genome Med

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA.

Published: March 2023

Background: There has been a growing appreciation recently that mutagenic processes can be studied through the lenses of mutational signatures, which represent characteristic mutation patterns attributed to individual mutagens. However, the causal links between mutagens and observed mutation patterns as well as other types of interactions between mutagenic processes and molecular pathways are not fully understood, limiting the utility of mutational signatures.

Methods: To gain insights into these relationships, we developed a network-based method, named GENESIGNET that constructs an influence network among genes and mutational signatures. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes.

Results: Applying GENESIGNET to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast cancer. The network identified by GENESIGNET also suggest an interaction between APOBEC hypermutation and activation of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. GENESIGNET also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway.

Conclusions: GENESIGNET provides a new and powerful method to reveal the relation between mutational signatures and gene expression. The GENESIGNET method was implemented in python, and installable package, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/GeneSigNet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987115PMC
http://dx.doi.org/10.1186/s13073-023-01162-xDOI Listing

Publication Analysis

Top Keywords

mutational signatures
20
influence network
8
mutagenic processes
8
mutation patterns
8
data sets
8
apobec mutations
8
mutational
6
genesignet
6
processes
5
signatures
5

Similar Publications

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Background: The differential diagnosis between benign and malignant thyroid nodules continues to be a major challenge in clinical practice. The rising incidence of thyroid neoplasm and the low incidence of aggressive thyroid carcinoma, urges the exploration of strategies to improve the diagnostic accuracy in a pre-surgical phase, particularly for indeterminate nodules, and to prevent unnecessary surgeries. Only in 2022, the 5th WHO Classification of Endocrine and Neuroendocrine Tumors, and in 2023, the 3rd Bethesda System for Reporting Thyroid Cytopathology and the European Thyroid Association included biomarkers in their guidelines.

View Article and Find Full Text PDF

Disordered proteins and domains are ubiquitous throughout the proteome of human cell types, yet the biomolecular sciences lack effective tool compounds and chemical strategies to study this class of proteins. In this context, we introduce a novel covalent tool compound approach that combines proximity-enhanced crosslinking with histidine trapping. Utilizing a maleimide-cyclohexenone crosslinker for efficient cysteine-histidine crosslinking, we elucidated the mechanism of this dual-reactive tool compound class.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Various factors in the tumor environment (TME) can lead to the activation of endoplasmic reticulum stress (ERS), thereby affecting the occurrence and development of tumors. The objective of our study was to develop and validate a radiogenomic signature based on ERS to predict prognosis and systemic combination therapy response.

View Article and Find Full Text PDF

Monkeypox virus (MPXV), a zoonotic pathogen, re-emerged in 2022 with the Clade IIb variant, raising global health concerns due to its unprecedented spread in non-endemic regions. Recent studies have shown that Clade IIb (2022 MPXV) is marked by unique genomic mutations and epidemiological behaviors, suggesting variations in host-virus interactions. This study aimed to identify the differentially expressed genes (DEGs) induced by the 2022 MPXV infection through comprehensive bioinformatics analyses of microarray and RNA-Seq datasets from post-infected cell types with different MPXV clades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!