The perennial western ragweed (Ambrosia psilostachya DC.) arrived from North America to Europe in the late nineteenth century and behaves invasive in its non-native range. Due to its efficient vegetative propagation via root suckers, A. psilostachya got naturalized in major parts of Europe forming extensive populations in Mediterranean coastal areas. The invasion history, the spreading process, the relationships among the populations as well as population structuring is not yet explored. This paper aims to give first insights into the population genetics of A. psilostachya in its non-native European range based on 60 sampled populations and 15 Simple Sequence Repeats (SSR). By AMOVA analysis we detected 10.4% of genetic variation occurring among (pre-defined) regions. These regions represent important harbors for trading goods from America to Europe that might have served as source for founder populations. Bayesian Clustering revealed that spatial distribution of genetic variation of populations is best explained by six groups, mainly corresponding to regions around important harbors. As northern populations show high degrees of clonality and lowest levels of within-population genetic diversity (mean H = 0.40 ± 0.09), they could preserve the initial genetic variation levels by long-lived clonal genets. In Mediterranean populations A. psilostachya expanded to millions of shoots. Some of those were obviously spread by sea current along the coast to new sites, where they initiated populations characterized by a lower genetic diversity. For the future, the invasion history in Europe might get clearer after consideration of North American source populations of western ragweed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988885PMC
http://dx.doi.org/10.1038/s41598-023-30377-6DOI Listing

Publication Analysis

Top Keywords

genetic variation
12
populations
9
ambrosia psilostachya
8
western ragweed
8
america europe
8
invasion history
8
genetic diversity
8
genetic
6
psilostachya
5
europe
5

Similar Publications

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Objective: This study was undertaken to describe incidence and distribution of seizures, etiologies, and epilepsy syndromes in the general child and youth population, using the current International League Against Epilepsy (ILAE) classifications.

Methods: The study platform is the Norwegian Mother, Father, and Child Cohort Study (MoBa). Epilepsy cases were identified through registry linkages facilitated by Norway's universal health care system and mandatory reporting to the Norwegian Patient Registry.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Circulating glycine levels have been associated with reduced risk of coronary artery disease (CAD) in humans but these associations have not been observed in all studies. We evaluated whether the relationship between glycine levels and atherosclerosis was causal using genetic analyses in humans and feeding studies in mice. Serum glycine levels were evaluated for association with risk of CAD in the UK Biobank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!