Hepatocyte ferroptosis contributes to anti-tuberculosis drug-induced liver injury: Involvement of the HIF-1α/SLC7A11/GPx4 axis.

Chem Biol Interact

Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China. Electronic address:

Published: May 2023

Anti-tuberculosis drug-induced liver injury (ATB-DILI) is a common serious adverse event observed during the clinical treatment of tuberculosis. However, the molecular mechanisms underlying ATB-DILI remain unclear. A recent study has indicated that ferroptosis and lipid peroxidation may be involved in liver injury. Therefore, this study aimed to investigate the role of ferroptosis in the molecular mechanisms underlying ATB-DILI. Our results showed that anti-TB drugs induced hepatocyte damage in vivo and in vitro and inhibited BRL-3A cell activity in a dose-dependent manner, accompanied by increased lipid peroxidation and reduced antioxidant levels. Moreover, ACSL4 expression and Fe concentration significantly increased following anti-TB drug treatment. Interestingly, anti-TB drug-induced hepatocyte damage was reversed by ferrostatin-1 (Fer-1, a specific ferroptosis inhibitor). In contrast, treatment with erastin (a ferroptosis inducer) resulted in further elevation of ferroptosis indicators. Additionally, we also found that anti-TB drug treatment inhibited HIF-1α/SLC7A11/GPx4 signaling in vivo and in vitro. Notably, HIF-1α knockdown significantly enhanced anti-TB drug-induced ferroptotic events and the subsequent exacerbation of hepatocyte damage. In conclusion, our findings indicated that ferroptosis plays a crucial role in the development of ATB-DILI. Furthermore, anti-TB drug-induced hepatocyte ferroptosis was shown to be regulated by HIF-1α/SLC7A11/GPx4 signaling. These findings shed new light on the mechanisms underlying ATB-DILI and suggest novel therapeutic strategies for this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110439DOI Listing

Publication Analysis

Top Keywords

liver injury
12
mechanisms underlying
12
underlying atb-dili
12
hepatocyte damage
12
anti-tb drug-induced
12
hepatocyte ferroptosis
8
anti-tuberculosis drug-induced
8
drug-induced liver
8
molecular mechanisms
8
indicated ferroptosis
8

Similar Publications

Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.

View Article and Find Full Text PDF

Tetrahydroberberrubine improves hyperlipidemia by activating the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway.

Eur J Pharmacol

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China. Electronic address:

Hyperlipidemia is a major risk factor for hypertension, coronary heart disease, diabetes and stroke, triggering an intensified research efforts into its prevention and treatment. Tetrahydroberberrubine (THBru) is a derivative of berberine (BBR) that has been shown to have higher bioavailability and lower toxicity compared to its parent compound. However, its impact on hyperlipidemia has not been fully explored.

View Article and Find Full Text PDF

Host hepatocyte senescence determines the success of hepatocyte transplantation in a mouse model of liver injury.

J Hepatol

January 2025

Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:

Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!