Trypanosoma cruzi is an obligate parasite that uses glucose as one of the main resources to maintain its survival and proliferation. In eukaryotic cells glucose transport across membranes is mediated by facilitated transport through a variety of transporters. Herein, genes from the recently described SWEET family of carbohydrate transporters were identified in trypanosomatid parasites, including the medically important species T. cruzi and Leishmania spp. The identified genes have sequences with the typical attributes of known SWEET transporters. The expression of TcSWEET, the gene for the SWEET transporter found in the T. cruzi genome, was evidenced by immunohistochemistry using a polyclonal serum raised against peptides selected from the deduced TcSWEET protein sequence. In Western blot analysis, this α-TcSWEET serum detected proteins within the theoretical molecular mass for TcSWEET (25.8 kDa) in total epimastigote lysates, suggesting its expression at this parasite stage. Additionally, this serum stained epimastigotes at localizations consistent with the cell body and the flagellum. Together, these data suggests that SWEET transporters may contribute to glucose transport in trypanosomatid parasites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2023.108496 | DOI Listing |
J Diabetes Complications
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, 99138 TRNC, Mersin 10, Turkey. Electronic address:
While artificial sweeteners are Generally Regarded as Safe (GRAS), the scientific community remains divided on their safety status. The previous assumption that artificial sweeteners are inert within the body is no longer valid. Artificial sweeteners, known for their high intense sweetness and low or zero calories, are extensively used today in food and beverage products as sugar substitutes and are sometimes recommended for weight management and Type 2 Diabetes Mellitus (T2DM) patients.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China.
Sweet potato-oat composite dough is a nutritious, functional dough with promising market potential. This study investigates its quality changes during freeze-thaw cycles from the perspectives of ice crystals and protein alterations to provide theoretical support for its processing and production. After freeze-thaw cycles, both the storage modulus and loss modulus of the dough decrease, resulting in increased hardness, reduced resilience and chewiness, lower sensory scores, decreased specific volume, and darker color.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089-0372, USA.
Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!