ZnInS (ZIS) is one of the widely studied photocatalyst for photocatalytic hydrogen evolution applications due to its prominent visible light response and strong reduction ability. However, its photocatalytic glycerol reforming performance for hydrogen evolution has never been reported. Herein, the visible light driven BiOCl@ZnInS (BiOCl@ZIS) composite was synthesized by growth of ZIS nanosheets on a template-like hydrothermally pre-prepared wide-band-gap BiOCl microplates using simple oil-bath method to be used for the first time for photocatalytic glycerol reforming for photocatalytic hydrogen evolution (PHE) under visible light irradiation (λ > 420 nm). The optimum amount of BiOCl microplates in the composite was found 4 wt% (4% BiOCl@ZIS) in the presence of in-situ 1 wt% Pt deposition. Then, the in-situ Pt photodeposition optimization studies over 4% BiOCl@ZIS composite showed the highest PHE rate of 674 μmol gh with the ultra-low platinum amount (0.0625 wt%). The possible mechanisms behind this improvement can be ascribed to the formation of BiS low-band-gap semiconductor during BiOCl@ZIS composite synthesis resulting in Z-scheme charge transfer mechanism between ZIS and BiS upon visible light irradiation. This work expresses not only the photocatalytic glycerol reforming over ZIS photocatalyst but also a solid proof of the contribution of wide-band-gap BiOCl photocatalysts to enhancement of ZIS PHE performance under visible light.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.02.129DOI Listing

Publication Analysis

Top Keywords

visible light
24
hydrogen evolution
16
photocatalytic hydrogen
12
biocl microplates
12
photocatalytic glycerol
12
glycerol reforming
12
biocl@zis composite
12
wide-band-gap biocl
8
light irradiation
8
photocatalytic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!