Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite progress in understanding the mechanisms governing walking balance control, the number of falls in our older adult population is projected to increase. Falls prevention systems and strategies may benefit from understanding how anticipation of a balance perturbation affects the planning and execution of biomechanical responses to mitigate instability. However, the extent to which anticipation affects the proactive and reactive adjustments to perturbations has yet to be fully investigated, even in young adults. Our purpose was to investigate the effects of anticipation on susceptibility to two different mechanical balance perturbations - namely, treadmill-induced perturbations and impulsive waist-pull perturbations. Twenty young adults (mean ± standard deviation age: 22.8 ± 3.3 years) walked on a treadmill without perturbations and while responding to treadmill belt (200 ms, 6 m/s) and waist-pull (100 ms, 6% body weight) perturbations delivered in the anterior and posterior directions. We used 3D motion capture to calculate susceptibility to perturbations during the perturbed and preceding strides via whole-body angular momentum (WBAM) and anterior-posterior margin of stability (MoS). Contrary to our hypotheses, anticipation did not affect young adults' susceptibility to walking balance challenges. Conversely, perturbation direction significantly affected walking instability. We also found that susceptibility to different perturbation contexts is dependent on the outcome measure chosen. We suggest that the absence of an effect of anticipation on susceptibility to walking balance perturbations in healthy young adults is a consequence of their having high confidence in their reactive balance integrity. These data provide a pivotal benchmark for the future identification of how anticipation of a balance challenge affects proactive and reactive balance control in populations at risk of falls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238661 | PMC |
http://dx.doi.org/10.1016/j.humov.2023.103070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!