Subsurface foraging is an important proportion of the activity budget of rorqual whales, yet information on their behaviour underwater remains challenging to obtain. Rorquals are assumed to feed throughout the water column and to select prey as a function of depth, availability and density, but there remain limitations in the precise identification of targeted prey. Current data on rorqual foraging in western Canadian waters have thus been limited to observations of prey species amenable to surface feeding, such as euphausiids and Pacific herring (Clupea pallasii), with no information on deeper alternative prey sources. We measured the foraging behaviour of a humpback whale (Megaptera novaeangliae) in Juan de Fuca Strait, British Columbia, using three complimentary methods: whale-borne tag data, acoustic prey mapping, and fecal sub-sampling. Acoustically detected prey layers were near the seafloor and consistent with dense schools of walleye pollock (Gadus chalcogrammus) distributed above more diffuse aggregations of pollock. Analysis of a fecal sample from the tagged whale confirmed that it had been feeding on pollock. Integrating the dive profile with the prey data revealed that the whale's foraging effort followed the general pattern of areal prey density, wherein the whale had a higher lunge-feeding rate at the highest prey abundance and stopped feeding when prey became limited. Our findings of a humpback whale feeding on seasonally energy-dense fish like walleye pollock, which are potentially abundant in British Columbia, suggests that pollock may be an important prey source for this rapidly growing whale population. This result is informative when assessing regional fishing activities for semi-pelagic species as well as the whales' vulnerability to fishing gear entanglements and feeding disturbances during a narrow window of prey acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987809 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282651 | PLOS |
R Soc Open Sci
January 2025
Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.
Variation in reproductive success is a fundamental prerequisite for sexual selection to act upon a trait. Assessing such variation is crucial in understanding a species' mating system and offers insights into population growth. Parentage analyses in cetaceans are rare, and the underlying forces of sexual selection acting on their mating behaviours remain poorly understood.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin, People's Republic of China.
Understanding the developmental sequence characteristics of the vertebral and appendicular skeletons of the larvae and juveniles of Larimichthys crocea (Naozhou population) can provide theoretical basis for seedling cultivation, environmental adaptation, and taxonomic identification. The cartilage-bone double staining method was used to stain, observe, and analyse the vertebrae, pectoral fins, anal fins, caudal fins, and dorsal fins of the larvae and juveniles of L. crocea (0-30 days post-hatching [DPH]).
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
The surface behaviours of humpback whales were studied in the presence of a whale-watching vessel at Nosy Be (Madagascar) during whale-watching activities, in order to characterise the ethogram of these animals. Data were collected from July to October 2018. Of the 75 total trips, humpback whales were observed 68 times and different types of aggregations were observed: Groups (33.
View Article and Find Full Text PDFProc Biol Sci
December 2024
Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France.
Baleen whale calves vocalize, but the behavioural context and role of their social calls in mother-calf interactions are yet to be documented further. We investigated the context of call production in humpback whale () calves using camera-equipped animal-borne multi-sensor tags. Behavioural states, including suckling sessions, were identified using accelerometer, depth and video data.
View Article and Find Full Text PDFJ Physiol
December 2024
Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA.
Given recent declines in North Pacific humpback whale (Megaptera novaeangliae) reproductive output and calf survival, there is additional urgency to better understand how mother-calf pairs allocate energy resources across their migratory cycle. Here, unoccupied aerial system (UAS; or drone) photogrammetry was used to quantify the body size and condition (BC) of humpback whales on their Hawai'i (HI) breeding and Southeast Alaska (SEAK) feeding grounds. Between 2018 and 2022, we collected 2410 measurements of 1659 individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!