Background: Guaranteeing durability, provenance, accessibility, and trust in open data sets can be challenging for researchers and organizations that rely on public repositories of data critical for epidemiology and other health analytics. The required data repositories are often difficult to locate and may require conversion to a standard data format. Data-hosting websites may also change or become unavailable without warning. A single change to the rules in one repository can hinder updating a public dashboard reliant on data pulled from external sources. These concerns are particularly challenging at the international level, because policies on systems aimed at harmonizing health and related data are typically dictated by national governments to serve their individual needs.
Objective: In this paper, we introduce a comprehensive public health data platform, EpiGraphHub, that aims to provide a single interoperable repository for open health and related data.
Methods: The platform, curated by the international research community, allows secure local integration of sensitive data while facilitating the development of data-driven applications and reports for decision-makers. Its main components include centrally managed databases with fine-grained access control to data, fully automated and documented data collection and transformation, and a powerful web-based data exploration and visualization tool.
Results: EpiGraphHub is already being used for hosting a growing collection of open data sets and for automating epidemiological analyses based on them. The project has also released an open-source software library with the analytical methods used in the platform.
Conclusions: The platform is fully open source and open to external users. It is in active development with the goal of maximizing its value for large-scale public health studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028505 | PMC |
http://dx.doi.org/10.2196/40554 | DOI Listing |
Clin Trials
January 2025
Rare Diseases Team, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.
View Article and Find Full Text PDFIn the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFExpert Rev Hematol
January 2025
Nishtar Medical University and Hospital, Multan, Pakistan.
Background: To compare plateletcount (PC), mean platelet volume (MPV), and platelet distribution width (PDW)between women with preeclampsia (PE) and normotensive pregnant women, andevaluate their effectiveness as predictors of PE.
Research Design Andmethods: This cross-sectionalstudy at Nishtar Hospital, Multan, included 141 women: 74 normotensive and 67preeclamptic. Data was collected using an automated hematology analyzer andanalyzed with SPSS version 26 and ROC curves.
Background/aims: Certain sociodemographic groups are routinely underrepresented in clinical trials, limiting generalisability. Here, we describe the extent to which enriched enrolment approaches yielded a diverse trial population enriched for older age in a randomised controlled trial of a blood-based multi-cancer early detection test (NCT05611632).
Methods: Participants aged 50-77 years were recruited from eight Cancer Alliance regions in England.
Syst Biol Reprod Med
December 2025
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!