Objectives: LCP tac has a recommended starting dose of 0.14 mg/kg/day in kidney transplant. The goal of this study was to assess the influence of CYP3A5 on perioperative LCP tac dosing and monitoring.
Methods: This was a prospective observational cohort study of adult kidney recipients receiving de-novo LCP tac. CYP3A5 genotype was measured and 90-day pharmacokinetic and clinical were assessed. Patients were classified as CYP3A5 expressors (*1 homozygous or heterozygous) or nonexpressors (LOF *3/*6/*7 allele).
Results: In this study, 120 were screened, 90 were contacted and 52 provided consent; 50 had genotype results, and 22 patients expressed CYP3A5*1. African Americans (AA) comprised 37.5% of nonexpressors versus 81.8% of expressors (P = 0.001). Initial LCP tac dose was similar between CYP3A5 groups (0.145 vs. 0.137 mg/kg/day; P = 0.161), whereas steady state dose was higher in expressors (0.150 vs. 0.117 mg/kg/day; P = 0.026). CYP3A5*1 expressors had significantly more tac trough concentrations of less than 6 ng/ml and significantly fewer tac trough concentrations of more than 14 ng/ml. Providers were significantly more likely to under-adjust LCP tac by 10 and 20% in CYP3A5 expressors versus nonexpressors (P < 0.03). In sequential modeling, CYP3A5 genotype status explained the LCP tac dosing requirements significantly more than AA race.
Conclusion: CYP3A5*1 expressors require higher doses of LCP tac to achieve therapeutic concentrations and are at higher risk of subtherapeutic trough concentrations, persisting for 30-day posttransplant. LCP tac dose changes in CYP3A5 expressors are more likely to be under-adjusted by providers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FPC.0000000000000494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!