Klebsiella pneumoniae is listed by the WHO as a priority pathogen of extreme importance that can cause serious consequences in clinical settings. Due to its increasing multidrug resistance all over the world, K. pneumoniae has the potential to cause extremely difficult-to-treat infections. Therefore, rapid and accurate identification of multidrug-resistant K. pneumoniae in clinical diagnosis is important for its prevention and infection control. However, the limitations of conventional and molecular methods significantly hindered the timely diagnosis of the pathogen. As a label-free, noninvasive, and low-cost method, surface-enhanced Raman scattering (SERS) spectroscopy has been extensively studied for its application potentials in the diagnosis of microbial pathogens. In this study, we isolated and cultured 121 K. pneumoniae strains from clinical samples with different drug resistance profiles, which included polymyxin-resistant K. pneumoniae (PRKP;  = 21), carbapenem-resistant K. pneumoniae, (CRKP;  = 50), and carbapenem-sensitive K. pneumoniae (CSKP;  = 50). For each strain, a total of 64 SERS spectra were generated for the enhancement of data reproducibility, which were then computationally analyzed via the convolutional neural network (CNN). According to the results, the deep learning model CNN plus attention mechanism could achieve a prediction accuracy as high as 99.46%, with robustness score of 5-fold cross-validation at 98.87%. Taken together, our results confirmed the accuracy and robustness of SERS spectroscopy in the prediction of drug resistance of K. pneumoniae strains with the assistance of deep learning algorithms, which successfully discriminated and predicted PRKP, CRKP, and CSKP strains. This study focuses on the simultaneous discrimination and prediction of Klebsiella pneumoniae strains with carbapenem-sensitive, carbapenem-resistant, and polymyxin-resistant phenotypes. The implementation of CNN plus an attention mechanism makes the highest prediction accuracy at 99.46%, which confirms the diagnostic potential of the combination of SERS spectroscopy with the deep learning algorithm for antibacterial susceptibility testing in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100812PMC
http://dx.doi.org/10.1128/spectrum.04126-22DOI Listing

Publication Analysis

Top Keywords

deep learning
16
klebsiella pneumoniae
12
sers spectroscopy
12
pneumoniae strains
12
pneumoniae
10
sers spectra
8
clinical settings
8
resistance pneumoniae
8
drug resistance
8
cnn attention
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!