Bacteria catalyze the formation and destruction of soil organic matter, but the bacterial dynamics in soil that govern carbon (C) cycling are not well understood. Life history strategies explain the complex dynamics of bacterial populations and activities based on trade-offs in energy allocation to growth, resource acquisition, and survival. Such trade-offs influence the fate of soil C, but their genomic basis remains poorly characterized. We used multisubstrate metagenomic DNA stable isotope probing to link genomic features of bacteria to their C acquisition and growth dynamics. We identify several genomic features associated with patterns of bacterial C acquisition and growth, notably genomic investment in resource acquisition and regulatory flexibility. Moreover, we identify genomic trade-offs defined by numbers of transcription factors, membrane transporters, and secreted products, which match predictions from life history theory. We further show that genomic investment in resource acquisition and regulatory flexibility can predict bacterial ecological strategies in soil. Soil microbes are major players in the global carbon cycle, yet we still have little understanding of how the carbon cycle operates in soil communities. A major limitation is that carbon metabolism lacks discrete functional genes that define carbon transformations. Instead, carbon transformations are governed by anabolic processes associated with growth, resource acquisition, and survival. We use metagenomic stable isotope probing to link genome information to microbial growth and carbon assimilation dynamics as they occur in soil. From these data, we identify genomic traits that can predict bacterial ecological strategies which define bacterial interactions with soil carbon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128055PMC
http://dx.doi.org/10.1128/mbio.03584-22DOI Listing

Publication Analysis

Top Keywords

resource acquisition
16
genomic features
12
predict bacterial
12
life history
12
stable isotope
12
isotope probing
12
identify genomic
12
soil
9
genomic
8
history strategies
8

Similar Publications

Background: The PalliPed project is a nationwide, observational, cross-sectional study designed with the aim of providing a constantly updated national database for the census and monitoring of specialized pediatric palliative care (PPC) activities in Italy. This paper presents the results of the first monitoring phase of the PalliPed project, which was developed through the PalliPed 2022-2023 study, to update current knowledge on the provision of specialized PPC services in Italy.

Methods: Italian specialized PPC centers/facilities were invited to participate and asked to complete a self-reporting, ad-hoc, online survey regarding their clinical activity in 2022-2023, in the revision of the data initially collected in the first PalliPed study of 2021.

View Article and Find Full Text PDF

Phosphorus Fertilization and Chemical Root Pruning: Effects on Root Traits During the Nursery Stage in Two Mediterranean Species from Central Chile.

Plants (Basel)

January 2025

Escuela de Ingeniería en Agronomía, Campus Tecnológico Local San Carlos, Tecnológico de Costa Rica, Alajuela 22321001, Costa Rica.

The role of a plant root system in resource acquisition is relevant to confront drought events caused by climate change. Accordingly, nursery practices like phosphorous (P) fertilization and root pruning have been shown to modify root architecture; however, their combined benefits require further investigation in Mediterranean species. We evaluated the effect of applied P concentrations (0, 15, 60, and 120 mg L P) with or without chemical (copper) root pruning (WCu, WoCu, respectively) in and on morpho-physiological and root architecture traits.

View Article and Find Full Text PDF

Leaf and Root Functional Traits of Woody and Herbaceous Halophytes and Their Adaptations in the Yellow River Delta.

Plants (Basel)

January 2025

State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271000, China.

Leaves and roots perform assimilation, supporting plant growth and functionality. The variations in their functional traits reflect adaptive responses to environmental conditions, yet limited information is available regarding these trait variations and their coordination in saline environments. In this study, 18 common woody and herbaceous halophyte species from the Yellow River Delta were collected, and their leaf and root functional traits were assessed and compared.

View Article and Find Full Text PDF

A Dual-Channel and Frequency-Aware Approach for Lightweight Video Instance Segmentation.

Sensors (Basel)

January 2025

The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China.

Video instance segmentation, a key technology for intelligent sensing in visual perception, plays a key role in automated surveillance, robotics, and smart cities. These scenarios rely on real-time and efficient target-tracking capabilities for accurate perception and intelligent analysis of dynamic environments. However, traditional video instance segmentation methods face complex models, high computational overheads, and slow segmentation speeds in time-series feature extraction, especially in resource-constrained environments.

View Article and Find Full Text PDF

The efficient acquisition and processing of large-scale terrain data has always been a focal point in the field of photogrammetry. Particularly in complex mountainous regions characterized by clouds, terrain, and airspace environments, the window for data collection is extremely limited. This paper investigates the use of airborne millimeter-wave InSAR systems for efficient terrain mapping under such challenging conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!