Periodontitis (PD) is a highly prevalent, chronic immune-inflammatory disease of the periodontium, that results in a loss of gingival soft tissue, periodontal ligament, cementum, and alveolar bone. In this study, a simple method of PD induction in rats is described. We provide detailed instructions for placement of the ligature model around the first maxillary molars (M1) and a combination of injections of lipopolysaccharide (LPS), derived from Porphyromonas gingivalis at the mesio-palatal side of the M1. The induction of periodontitis was maintained for 14 days, promoting the accumulation of bacteria biofilm and inflammation. To validate the animal model, IL-1β, a key inflammatory mediator, was determined by an immunoassay in the gingival crevicular fluid (GCF), and alveolar bone loss was calculated using cone beam computed tomography (CBCT). This technique was effective in promoting gingiva recession, alveolar bone loss, and an increase in IL-1β levels in the GCF at the end of the experimental procedure after 14 days. This method was effective in inducing PD, thus being able to be used in studies on disease progression mechanisms and future possible treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/64842 | DOI Listing |
Int J Surg Case Rep
January 2025
Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tishreen University. Electronic address:
Introduction And Importance: Restoring lost teeth in the posterior atrophic maxilla presents a significant challenge due to insufficient bone volume for implant placement. Simultaneous implant placement during lateral sinus lift is often considered, but the decision is typically based on the amount of existing bone. The aim of this study was to investigate the feasibility of simultaneous implant placement and maxillary sinus floor augmentation in the atrophic posterior maxilla using autogenous bone ring.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
The University of Texas Medical Branch at Galveston, Microbiology and Immuology, Galveston, Texas, United States.
Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.
View Article and Find Full Text PDFOdontology
January 2025
School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Odontology, Section for Molecular Periodontology, Umeå University, Umeå, Sweden.
Introduction: Periodontitis is associated with rheumatoid arthritis (RA). One hypothesis posits that this connection arises from the formation of autoantibodies against citrullinated proteins (ACPA) in inflamed gums, possibly triggered by . We previously demonstrated an increased antibody response to arginine gingipains (anti-Rgp IgG), not only in individuals with severe periodontitis compared to controls, but in RA versus controls, with an association to ACPA.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!