AI Article Synopsis

Article Abstract

Liquid metal (LM) droplets are now used in many applications including catalysis, sensing, and flexible electronics. Consequently, the introduction of methods for on-demand alternating electronic properties of LMs is necessary. The active surface of LMs provides a unique environment for spontaneous chemical reactions that enable the formation of thin layers of functional materials for such modulations. Here, we showed the deposition of n-type MoO and MoOS semiconductors on the surface of EGaIn LM droplets under mechanical agitation to successfully modulate their electronic structures. The "liquid solution"-"liquid metal" interaction resulted in the formation of oxide and oxysulfide layers on the surface of LM droplets. The comprehensive study of electronic and optical properties revealed a decrease in the band gap of the droplets after surface decoration with MoO and MoOS, leading to deeper n-type doping of the materials. This method provides a facile procedure for engineering the electronic band structure of LM-based composites when they are necessary for various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr06733aDOI Listing

Publication Analysis

Top Keywords

liquid metal
8
oxide oxysulfide
8
electronic band
8
band structure
8
moo moos
8
electronic
5
coating gallium-based
4
gallium-based liquid
4
metal particles
4
particles molybdenum
4

Similar Publications

The Science of Nanostructure Acoustic Vibrations.

Annu Rev Phys Chem

January 2025

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA;

Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations.

View Article and Find Full Text PDF

Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups.

ACS Nano

January 2025

CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium-indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer.

View Article and Find Full Text PDF

Flow environment affects nutrient transport in soft plant roots.

Soft Matter

January 2025

Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.

View Article and Find Full Text PDF

Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts.

Soft Matter

January 2025

School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.

Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.

View Article and Find Full Text PDF

Observation of O Molecules Inserting into Fe-H Bonds in a Ferrous Metal-Organic Framework.

J Am Chem Soc

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Exploring the interactions between oxygen molecules and metal sites has been a significant topic. Most previous studies concentrated on enzyme-mimicking metal sites interacting with O to form M-OO species, leaving the development of new types of O-activating metal sites and novel adsorption mechanisms largely overlooked. In this study, we reported an Fe(II)-doped metal-organic framework (MOF) [FeZnH(bibtz)] (, Hbibtz = 1,1'-5,5'-bibenzo[][1,2,3]triazole), featuring an unprecedented tetrahedral Fe(II)HN site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!