The unique properties of zeolites make them an interesting material to be used in separation processes. The possibility of tailoring some of their characteristics, like the Si/Al ratio, allows optimizing their synthesis for a given task. Concerning the adsorption of toluene by faujasites an understanding of the effect of cations is necessary to foster the elaboration of new materials, which can capture molecules with a high degree of selectivity and sensitivity. Undoubtedly, this knowledge is relevant for a wide range of applications going from the elaboration of technologies for improving the air-quality to diagnostic procedures to prevent health risks. The studies reported here using Grand Canonical Monte Carlo simulations elucidate the role of Na-cations in the adsorption of toluene by faujasites with different Si/Al ratios. They detail how the location of the cations inhibits or enhances the adsorption. The cations located at site II are shown to be those enhancing the adsorption of toluene on faujasites. Interestingly, the cations located at site III generate a hindrance at high loading. This becomes an impediment for the organization of toluene molecules inside faujasites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp04644jDOI Listing

Publication Analysis

Top Keywords

adsorption toluene
12
toluene faujasites
12
na-cations adsorption
8
cations located
8
located site
8
toluene
5
adsorption sites
4
sites toluene
4
toluene faujasites?
4
faujasites? unique
4

Similar Publications

Constructing oxygen vacancies in Cu-doped MnO by a quenching strategy for boosting the catalytic oxidation of toluene.

J Hazard Mater

January 2025

College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; Shenyang Key Laboratory of Chemical Pollution Control, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:

Here, a quenching strategy was developed to create oxygen vacancies in Cu doped α-MnO. The evolutions of oxygen vacancies were directly followed by means of XRD refinement, EPR and XPS. In combination with DFT calculations and detailed characterizations, evidence is captured that oxygen vacancies not only act as direct sites for the adsorption and activation of gaseous oxygen and toluene, but also accelerate the consumption and replenishment cycle of lattice oxygen species by weakening the strength of metal-oxygen bonds.

View Article and Find Full Text PDF

Achieving the adsorptive separation and chromatographic separation of industrially the important chemicals toluene and methylcyclohexane using the same material is a highly desirable goal. We have successfully accomplished this using a fluorinated macrocycle tetrafluoroterphen[3]arene (4FTP3), which was synthesized and used for gas chromatographic separation in our previous work. The macrocycle 4FTP3 permitted the adsorptive separation of toluene from a toluene/methylcyclohexane mixture (1:1, v/v) with a purity of 99.

View Article and Find Full Text PDF

Metal-organic framework (MOF) based substrates have great potential for quantitative analysis of hazardous substances using surface-enhanced Raman spectroscopy (SERS) due to their significant signal enhancement, but face challenges like complex preparation, and lack of tunability. Here, we have successfully prepared a well-defined core-satellite superstructure (ZIF-8@Ag) through solvent-induced assembly of silver nanoparticles (Ag NPs) on truncated rhombic dodecahedral ZIF-8. By wisely selecting toluene as the solvent, the assembly process can be easily initiated through ultrasonic treatment and it allows for precise morphological adjustments to build a range of superstructures with different assembly densities of Ag NPs feed ratio tuning.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs), such as toluene, are hazardous air pollutants that pose significant health and environmental risks. This study addresses remediation of toluene by developing a bifunctional nitrogen-doped biochar (NDB) activated with sodium hydroxide (NaOH), aimed at reducing toluene emissions through both adsorption and catalytic oxidation. A series of NDB samples were prepared via NaOH activation and pyrolysis at varying temperatures to optimize their adsorption capacity and catalytic performance.

View Article and Find Full Text PDF

The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!