Recent studies have highlighted a key role played by the sympathetic nervous system (SNS) and adrenergic stress in mediating immune suppression associated with chronic inflammation in cancer and other diseases. The connection between chronic SNS activation, adrenergic stress and immune suppression is linked in part to the ability of catecholamines to stimulate the bone marrow release and differentiation of myeloid-derived suppressor cells (MDSC). Rodent model studies have revealed an important role for β-adrenergic receptor signalling in suppression of cancer immunity in mice subjected to chronic stresses, including thermal stress. Importantly, therapeutic blockade of beta-adrenergic responses by drugs such as propranolol can partially reverse the generation and differentiation of MDSC, and partly restore tumour immunity. Clinical trials in both humans and dogs with cancer have demonstrated that propranolol blockade can improve responses to radiation therapy, cancer vaccines and immune checkpoint inhibitors. Thus, the SNS stress response has become an important new target to relieve immune suppression in cancer and other chronic inflammatory conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vco.12891 | DOI Listing |
Background: In the United States, complete abstinence persists as the standard for demonstrating recovery success from substance use disorders (SUDs), apart from alcohol use disorder (AUD). Although the FDA has recently indicated openness for non-abstinence outcomes as treatment targets, the traditional benchmark of complete abstinence for new medications to treat SUDs remains a hurdle and overshadows other non-abstinent outcomes desired by people with SUDs (e.g.
View Article and Find Full Text PDFLearn Mem
January 2025
Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands
Stressful and emotionally arousing experiences induce the release of noradrenergic and glucocorticoid hormones that synergistically strengthen memories but differentially regulate qualitative aspects of memory. This highlights the need for sophisticated behavioral tasks that allow for the assessment of memory quality. The dual-event inhibitory avoidance task for rats is such a behavioral task designed to evaluate both the strength and specificity of memory.
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland.
Background: Presentations and outcomes of acute myocardial infarction (MI) differ between women and men, with the worst outcomes being reported in younger women. Mental stress induced ischemia and sympathetic activation have been suggested to play a prominent role in the pathogenesis of MI in younger women, however, the impact of sex hormones on these parameters remains unknown.
Methods: The effect of sex hormones and age on myocardial infarct size and myocardial sympathetic activity (MSA) was assessed in male and female, as well as young (4-6 months) and aged (20-22 months) FVB/N mice (n = 106, 60 gonadectomized and 46 sham-operated animals) who underwent in vivo [C]meta-hydroxyephedrine ([C]mHED) positron emission tomography (PET) and cardiac magnetic resonance (CMR) imaging 24 h after a 30 min myocardial ischemic injury.
JMIR Form Res
January 2025
Center on Substance Use and Health, San Francisco Department of Public Health, San Francisco, CA, United States.
Background: Despite increasing fatal stimulant poisoning in the United States, little is understood about the mechanism of death. The psychological autopsy (PA) has long been used to distinguish the manner of death in equivocal cases, including opioid overdose, but has not been used to explicitly explore stimulant mortality.
Objective: We aimed to develop and implement a large PA study to identify antecedents of fatal stimulant poisoning, seeking to maximize data gathering and ethical interactions during the collateral interviews.
J Trauma Acute Care Surg
November 2024
From the Department of Surgery and Sepsis and Critical Illness Research Center (J.A.M., L.S.K., E.E.P., C.G.A., K.B.K., L.E.B., P.A.E., A.M.M.), University of Florida College of Medicine, Gainesville; and The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences (G.P., R.N.), Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida.
Background: Traumatic injury leads to gut dysbiosis with changes in microbiome diversity and conversion toward a "pathobiome" signature characterized by a selective overabundance of pathogenic bacteria. The use of non-selective beta antagonism in trauma patients has been established as a useful adjunct to reduce systemic inflammation. We sought to investigate whether beta-adrenergic blockade following trauma would prevent the conversion of microbiome to a "pathobiome" phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!