A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties. | LitMetric

Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties.

Front Mol Biosci

Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, Leipzig, Germany.

Published: February 2023

Determining the three-dimensional structure of proteins in their native functional states has been a longstanding challenge in structural biology. While integrative structural biology has been the most effective way to get a high-accuracy structure of different conformations and mechanistic insights for larger proteins, advances in deep machine-learning algorithms have paved the way to fully computational predictions. In this field, AlphaFold2 (AF2) pioneered high-accuracy single-chain modeling. Since then, different customizations have expanded the number of conformational states accessible through AF2. Here, we further expanded AF2 with the aim of enriching an ensemble of models with user-defined functional or structural features. We tackled two common protein families for drug discovery, G-protein-coupled receptors (GPCRs) and kinases. Our approach automatically identifies the best templates satisfying the specified features and combines those with genetic information. We also introduced the possibility of shuffling the selected templates to expand the space of solutions. In our benchmark, models showed the intended bias and great accuracy. Our protocol can thus be exploited for modeling user-defined conformational states in an automatic fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978208PMC
http://dx.doi.org/10.3389/fmolb.2023.1121962DOI Listing

Publication Analysis

Top Keywords

gpcrs kinases
8
user-defined functional
8
functional structural
8
structural biology
8
conformational states
8
biasing alphafold2
4
alphafold2 predict
4
predict gpcrs
4
kinases user-defined
4
structural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!