Type 2 diabetes mellitus (T2DM) is one of the most common forms of diabetes. We are living in the middle of a global diabetes epidemic. Emerging pieces of evidence are suggesting the increased expression of protein tyrosine phosphatase 1B (PTP1B) in the pancreas and adipose tissues during T2DM. The negative regulation of the insulin signaling pathway by PTP1B helps the researchers to consider it as a potential therapeutic target for the treatment of insulin resistance and its associated complications. From the literature, we found that compound 5,7-dihydroxy-3,6-dimethoxy-2-(4-methoxy-3-(3-methyl-2-enyl)phenyl)-4H-chromen-4-one (Viscosol) extracted from Dodonaea viscosa can inhibit PTP1B in vitro. Therefore, in this study, we aimed to evaluate the antidiabetic effect of this compound in a high-fat diet (HFD) and low-dose streptozotocin- (STZ-) induced T2DM mouse model. For this purpose, T2DM was induced in C57BL/6 male mice by using an already established protocol with minor modification. The compound-treated T2DM mice showed improvements in biochemical parameters, i.e., decrease in the fasting blood glucose level, increased body weight, improved liver profile, and reduction in oxidative stress. Furthermore, to elucidate the inhibition of PTP1B, the expression level of PTP1B was also measured at mRNA and protein levels by real-time PCR and western blot, respectively. Additionally, downstream targets (INSR, IRS1, PI3K, and GLUT4) were examined for confirming the inhibitory effect of PTP1B. Our results suggest that the compound can specifically inhibit PTP1B in vivo and might have the ability to improve insulin resistance and insulin secretion. Based on our experiment, we can confidently state that this compound can be a new PTP1B drug candidate for the treatment of T2DM in the coming future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977540PMC
http://dx.doi.org/10.1155/2022/2323078DOI Listing

Publication Analysis

Top Keywords

protein tyrosine
8
tyrosine phosphatase
8
type diabetes
8
mouse model
8
ptp1b
8
insulin resistance
8
inhibit ptp1b
8
t2dm
6
targeted inhibition
4
inhibition protein
4

Similar Publications

, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.

View Article and Find Full Text PDF

Anti-Inflammatory Activity of Gomphrenin-Rich Fraction from L. f. Fruits.

Nutrients

December 2024

Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.

L. (Malabar spinach, Basellaceae), widely consumed as a leafy vegetable, produces dark-colored fruits rich in betacyanins, including rare 6-glycosylated derivatives called gomphrenins. Comprehensive studies on the anti-inflammatory potential of its gomphrenin fraction (A) and crude extract (B) employed various analytical and biological methods.

View Article and Find Full Text PDF

Background: Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood.

View Article and Find Full Text PDF

Exploring the Antimycobacterial Potential of Podocarpusflavone A from : In Vitro and In Vivo Insights.

Pharmaceuticals (Basel)

November 2024

Laboratório de Produtos Bioativos (LPBio), Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé 27930-560, RJ, Brazil.

: Tuberculosis (TB) is one of the leading infectious causes of death worldwide, highlighting the importance of identifying new anti-TB agents. In previous research, our team identified antimycobacterial activity in leaf extract; therefore, this study aims to conduct further exploration of its potential. : Classical chromatography was applied for fractionation and spectrometric techniques were utilized for chemical characterization.

View Article and Find Full Text PDF

Metaproteomic analysis of microbiome post-translation modifications (PTMm) is challenging, and little is known about the effects of inflammation on the bacterial PTM landscape in IBD. Here, we adapted and optimised fluorescence in situ hybridisation-flow cytometry (FISH-FC) to study microbiome-wide tyrosine phosphorylation (p-Tyr) in children with and without inflammatory bowel disease (IBD). Microbial p-Tyr signal was significantly higher in children with IBD, compared to those without.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!