Unlabelled: The acquisition of cell invasiveness is the key transition from benign melanocyte hyperplasia to aggressive melanoma. Recent work has provided an intriguing new link between the presence of supernumerary centrosomes and increased cell invasion. Moreover, supernumerary centrosomes were shown to drive non-cell-autonomous invasion of cancer cells. Although centrosomes are the principal microtubule organizing centers, the role of dynamic microtubules for non-cell-autonomous invasion remains unexplored, in particular, in melanoma. We investigated the role of supernumerary centrosomes and dynamic microtubules in melanoma cell invasion and found that highly invasive melanoma cells are characterized by the presence of supernumerary centrosomes and by increased microtubule growth rates, both of which are functionally interlinked. We demonstrate that enhanced microtubule growth is required for increased three-dimensional melanoma cell invasion. Moreover, we show that the activity to enhance microtubule growth can be transferred onto adjacent noninvasive cells through microvesicles involving HER2. Hence, our study suggests that suppressing microtubule growth, either directly using anti-microtubule drugs or through HER2 inhibitors might be therapeutically beneficial to inhibit cell invasiveness and thus, metastasis of malignant melanoma.

Significance: This study shows that increased microtubule growth is required for melanoma cell invasion and can be transferred onto adjacent cells in a non-cell-autonomous manner through microvesicles involving HER2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981201PMC
http://dx.doi.org/10.1158/2767-9764.CRC-22-0010DOI Listing

Publication Analysis

Top Keywords

microtubule growth
24
cell invasion
20
supernumerary centrosomes
16
increased microtubule
12
melanoma cell
12
required melanoma
8
cell invasiveness
8
presence supernumerary
8
centrosomes increased
8
non-cell-autonomous invasion
8

Similar Publications

[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Article Synopsis
  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.
View Article and Find Full Text PDF

Mechanistic basis of temperature adaptation in microtubule dynamics across frog species.

Curr Biol

January 2025

Max Planck Institute for Infection Biology, Virchowweg 12, 10117 Berlin, Germany; Marine Biological Laboratory, 7 Mbl St., Woods Hole, MA 02543, USA; Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany. Electronic address:

Cellular processes are remarkably effective across diverse temperature ranges, even with highly conserved proteins. In the context of the microtubule cytoskeleton, which is critically involved in a wide range of cellular activities, this is particularly striking, as tubulin is one of the most conserved proteins while microtubule dynamic instability is highly temperature sensitive. Here, we leverage the diversity of natural tubulin variants from three closely related frog species that live at different temperatures.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models.

Cell Rep

January 2025

Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; 1(st) Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic. Electronic address:

Recent research has shown that mtDNA-deficient cancer cells (ρ cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1) mice markedly delayed tumor formation after grafting ρ cancer cells.

View Article and Find Full Text PDF

Endometrial cancer (EC) is a prevalent gynecological malignancy with a rising incidence and poor prognosis in advanced cases. Long non-coding RNAs (lncRNAs) have been implicated in various cancers, including EC. This study explores the role of lncRNA Linc01224 in EC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!