The endoplasmic reticulum (ER) is a major organelle involved in protein quality control and cellular homeostasis. ER stress results from structural and functional dysfunction of the organelle, along with the accumulation of misfolded proteins and changes in calcium homeostasis, it leads to ER stress response pathway such as unfolded protein response (UPR). Neurons are particularly sensitive to the accumulation of misfolded proteins. Thus, the ER stress is involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, prion disease and motor neuron disease (MND). Recently, the complex involvement of ER stress pathways has been demonstrated in experimental models of amyotrophic lateral sclerosis (ALS)/MND using pharmacological and genetic manipulation of the unfolded protein response (UPR), an adaptive response to ER stress. Here, we aim to provide recent evidence demonstrating that the ER stress pathway is an essential pathological mechanism of ALS. In addition, we also provide therapeutic strategies that can help treat diseases by targeting the ER stress pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974850 | PMC |
http://dx.doi.org/10.3389/fnagi.2023.1047897 | DOI Listing |
J Appl Physiol (1985)
January 2025
Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.
There is growing interest in understanding the complex relationship between psychosocial stress and the human gastrointestinal microbiome (GIM). This review explores the potential physiological pathways connecting these two and how they contribute to a pro-inflammatory environment that can lead to the development and progression of the disease. Exposure to psychosocial stress triggers the activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary axis (HPA), leading to various physiological responses essential for survival and coping with the stressor.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.
Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).
Intensive Care Med Exp
January 2025
Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.
View Article and Find Full Text PDFAmino Acids
January 2025
College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Zoology, University of Allahabad, Senate House, University Road, Old Katra, Prayagraj, Uttar Pradesh, 211002, India.
This study was designed to evaluate the dose-dependent efficacy of neurotensin receptor-1 (NTSR1) agonist PD149163 in the amelioration of the lipopolysaccharide (LPS)-induced apoptosis in the gastrointestinal tract (GIT) of mice. PD149163 is an analogue of NTS, a GIT tri-decapeptide with anti-inflammatory and anti-oxidative effects. Swiss-albino mice (female/8 weeks/25 ± 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!