Groundnut or peanut () is a legume crop. Its seeds are rich in protein and oil. Aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) is an important enzyme involved in detoxification of aldehyde and cellular reactive oxygen species, as well as in attenuation of lipid peroxidation-meditated cellular toxicity under stress conditions. However, few studies have been identified and analyzed about ALDH members in . In the present study, 71 members of the ALDH superfamily (AhALDH) were identified using the reference genome obtained from the Phytozome database. A systematic analysis of the evolutionary relationship, motif, gene structure, -acting elements, collinearity, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and expression patterns was conducted to understand the structure and function of s. s exhibited tissue-specific expression, and quantitative real-time PCR identified significant differences in the expression levels of members under saline-alkali stress. The results revealed that some members could be involved in response to abiotic stress. Our findings on provide insights for further study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978533 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1097001 | DOI Listing |
In Vivo
December 2024
Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, Republic of Korea;
Background/aim: Breast cancer stem cells (BCSCs) are a subpopulation of tumor cells that play a role in therapeutic resistance. In this study, we demonstrated that sertaconazole, an antifungal agent, displayed a potent inhibition on cancer stem cells (CSCs) and investigated the mechanism of action involved in its anti-BCSC effect.
Materials And Methods: The effect of sertaconazole on BCSCs was investigated using a mammosphere formation assay, a colony formation assay, and a cell migration assay.
Dev Cell
December 2024
State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China. Electronic address:
The neurotransmitter gamma-aminobutyric acid (GABA) has been thought to be involved in the development of some types of cancer. Yet, the de novo synthesis of GABA and how it functions in hepatocellular carcinoma (HCC) remain unclear. Here, we report that SLC6A12 acts as a transporter of GABA, and that aldehyde dehydrogenase 9 family member A1 (ALDH9A1), not glutamate decarboxylase 1 (GAD1), generates GABA in human HCC.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, QC, H4B 1R6, Canada.
Nitroglycerin is a potent vasodilator in clinical use since the late 1800s. It functions as a prodrug that is bioactivated by formation of an enzyme-based thionitrate, E-Cys-NO. This intermediate reportedly decomposes to release NO and NO but their relative yields remain controversial.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
Mitochondrial dysfunction is a crucial event in acute kidney injury (AKI), leading to a metabolic shift toward glycolysis and increased lactate production. Lactylation, a posttranslational modification derived from lactate, plays a significant role in various cellular processes, yet its implications in AKI remain underexplored. Here, a marked increase in lactate levels and pan-Kla levels are observed in kidney tissue from AKI patients and mice, with pronounced lactylation activity in injured proximal tubular cells identified by single-cell RNA sequencing.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!