Evaluating Equating Transformations in IRT Observed-Score and Kernel Equating Methods.

Appl Psychol Meas

Department of Economics and Statistics, University of Udine, Udine, Italy.

Published: March 2023

Test equating is a statistical procedure to ensure that scores from different test forms can be used interchangeably. There are several methodologies available to perform equating, some of which are based on the Classical Test Theory (CTT) framework and others are based on the Item Response Theory (IRT) framework. This article compares equating transformations originated from three different frameworks, namely IRT Observed-Score Equating (IRTOSE), Kernel Equating (KE), and IRT Kernel Equating (IRTKE). The comparisons were made under different data-generating scenarios, which include the development of a novel data-generation procedure that allows the simulation of test data without relying on IRT parameters while still providing control over some test score properties such as distribution skewness and item difficulty. Our results suggest that IRT methods tend to provide better results than KE even when the data are not generated from IRT processes. KE might be able to provide satisfactory results if a proper pre-smoothing solution can be found, while also being much faster than IRT methods. For daily applications, we recommend observing the sensibility of the results to the equating method, minding the importance of good model fit and meeting the assumptions of the framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979196PMC
http://dx.doi.org/10.1177/01466216221124087DOI Listing

Publication Analysis

Top Keywords

kernel equating
12
equating transformations
8
irt
8
irt observed-score
8
equating
8
irt methods
8
test
5
evaluating equating
4
transformations irt
4
observed-score kernel
4

Similar Publications

Introduction: A problem that applied researchers and practitioners often face is the fact that different institutions within research consortia use different scales to evaluate the same construct which makes comparison of the results and pooling challenging. In order to meaningfully pool and compare the scores, the scales should be harmonized. The aim of this paper is to use different test equating methods to harmonize the ADHD scores from Child Behavior Checklist (CBCL) and Strengths and Difficulties Questionnaire (SDQ) and to see which method leads to the result.

View Article and Find Full Text PDF

This study aims to evaluate the performance of Item Response Theory (IRT) kernel equating in the context of mixed-format tests by comparing it to IRT observed score equating and kernel equating with log-linear presmoothing. Comparisons were made through both simulations and real data applications, under both equivalent groups (EG) and non-equivalent groups with anchor test (NEAT) sampling designs. To prevent bias towards IRT methods, data were simulated with and without the use of IRT models.

View Article and Find Full Text PDF

Test equating is a statistical procedure to ensure that scores from different test forms can be used interchangeably. There are several methodologies available to perform equating, some of which are based on the Classical Test Theory (CTT) framework and others are based on the Item Response Theory (IRT) framework. This article compares equating transformations originated from three different frameworks, namely IRT Observed-Score Equating (IRTOSE), Kernel Equating (KE), and IRT Kernel Equating (IRTKE).

View Article and Find Full Text PDF

In standardized testing, equating is used to ensure comparability of test scores across multiple test administrations. One equipercentile observed-score equating method is kernel equating, where an essential step is to obtain continuous approximations to the discrete score distributions by applying a kernel with a smoothing bandwidth parameter. When estimating the bandwidth, additional variability is introduced which is currently not accounted for when calculating the standard errors of equating.

View Article and Find Full Text PDF

US Consumers' Perceptions of Raw and Cooked Broken Rice.

Foods

November 2021

Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA.

Rice supplies about 20% of the calories to the world's consumers. Milling removes the outer husk and bran, breaking about 20% of the rice kernels during the milling process that equates to almost 100,000,000 tons of rice annually. Broken rice is discounted in price by almost half or relegated to non-human consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!