Collective motion behaviour such as the movement of swarming bees, flocking birds or schooling fish has inspired computer-based swarming systems. They are widely used in agent formation control, including aerial and ground vehicles, teams of rescue robots, and exploration of dangerous environments with groups of robots. Collective motion behaviour is easy to describe, but highly subjective to detect. Humans can easily recognise these behaviours; however, it is hard for a computer system to recognise them. Since humans can easily recognise these behaviours, ground truth data from human perception is one way to enable machine learning methods to mimic this human perception. Hence ground truth data has been collected from human perception of collective motion behaviour recognition by running an online survey. In this survey, participants provide their opinion about the behaviour of 'boid' point masses. Each question of the survey contains a short video (around 10 seconds), captured from simulated boid movements. Participants were asked to drag a slider to label each video as either 'flocking' or 'not flocking'; 'aligned' or 'not aligned' or 'grouped' or 'not grouped'. By averaging these responses, three binary labels were created for each video. This data has been analysed to confirm that it is possible for a machine to learn binary classification labels from the human perception of collective behaviour dataset with high accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975684 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.108976 | DOI Listing |
Sci Rep
January 2025
Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
Infrared array sensor-based fall detection and activity recognition systems have gained momentum as promising solutions for enhancing healthcare monitoring and safety in various environments. Unlike camera-based systems, which can be privacy-intrusive, IR array sensors offer a non-invasive, reliable approach for fall detection and activity recognition while preserving privacy. This work proposes a novel method to distinguish between normal motion and fall incidents by analyzing thermal patterns captured by infrared array sensors.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Cognitive Systems Lab, University of Bremen, 28359 Bremen, Germany.
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy.
Parkinson's disease (PD) is characterized by a slow, short-stepping, shuffling gait pattern caused by a combination of motor control limitations due to a reduction in dopaminergic neurons. Gait disorders are indicators of global health, cognitive status, and risk of falls and increase with disease progression. Therefore, the use of quantitative information on the gait mechanisms of PD patients is a promising approach, particularly for monitoring gait disorders and potentially informing therapeutic interventions, though it is not yet a well-established tool for early diagnosis or direct assessment of disease progression.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Sport and Physical Activity Research Centre, Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Rd, Sheffield S9 3TY, UK.
Our aim was to validate a sacral-mounted inertial measurement unit (IMU) for reconstructing running kinematics and comparing movement patterns within and between runners. IMU data were processed using Kalman and complementary filters separately. RMSE and Bland-Altman analysis assessed the validity of each filtering method against a motion capture system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!