Lubricants are essential in transportation vehicles and industrial machinery to improve the lifetime of moving components. Antiwear additives in lubricants significantly minimize wear and material removal due to friction. While a wide range of modified and unmodified nanoparticles (NPs) have been extensively studied as lubricant additives, fully oil-miscible and oil-transparent NPs are essential to improve performance and oil visibility. Here, we report dodecanethiol-modified oil-suspendable and optical-transparent ZnS nanoparticles (NPs) with a nominal diameter of 4 nm as antiwear additives to a non-polar base oil. The ZnS NPs formed a transparent and long-term stable suspension in a synthetic polyalphaolefin (PAO) lubricating oil. The ZnS NPs in PAO oil at 0.5 or 1.0 wt% concentration demonstrated excellent friction and wear protection. The synthesized ZnS NPs showed 98% wear reduction compared to the neat PAO4 base oil. For the first time, this report showed the outstanding tribological performance of the ZnS NPs benchmarked to the commercial antiwear additive zinc dialkyldithiophosphate (ZDDP) with an additional 40-70% wear reduction. Surface characterization revealed a ZnS-derived self-healing polycrystalline tribofilm (<250 nm), which is key to superior lubricating performance. Our results indicate the potential of ZnS NPs as a high-performance and competitive antiwear additive to ZDDP, which has broad transportation and industrial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977461 | PMC |
http://dx.doi.org/10.1039/d2ra07295e | DOI Listing |
Nanoscale
January 2025
4109 Newman & Wolfrom Laboratory, 100 W 18th Ave, Columbus, OH 43210, USA.
A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Science, Botany Department, Mansoura University, Mansoura, 35516, Egypt.
In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite.
View Article and Find Full Text PDFSci Bull (Beijing)
November 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China. Electronic address:
Excess intracellular HS induces destructive mitochondrial toxicity, while overload of Zn results in cell pyroptosis and potentiates the tumor immunogenicity for immunotherapy. However, the precise delivery of both therapeutics remains a great challenge. Herein, an electrically activable ZnS nanochip for the controlled release of HS and Zn was developed for enhanced gas-ionic-immunotherapy (GIIT).
View Article and Find Full Text PDFRSC Med Chem
November 2024
Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
Environ Sci Technol
December 2024
The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Sulfate-reducing microorganisms (SRMs) show promise for heavy metal removal from contaminated environments, but their scalability is limited by reliance on organic carbon, sludge formation, and CO emissions. This study investigates using photoelectrons from biogenic (Bio-ZnS) and abiogenic (Abio-ZnS) sphalerite nanoparticles to enhance the activity of G20 (G20) for sulfate reduction and lead removal without organic substrates. Both Abio-ZnS and Bio-ZnS NPs promote sulfate reduction and energy production in G20 cells under illumination without the addition of organic substrates, with Bio-ZnS achieving 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!