A series of cordierite monolithic catalysts with Ru species supported on different available low-cost carriers were prepared and investigated for the elimination of CVOCs. The results suggest that the monolithic catalyst with Ru species supported on anatase TiO carrier with abundant acidic sites exhibited the desired catalytic activity for DCM oxidation with the value of 368 °C. In addition, a pseudo-boehmite sol used as binder was introduced into the preparation of the monolithic catalysts to further improve the adhesion between the powder catalysts and cordierite honeycomb carrier. The results suggest that although the and of the Ru/TiO/PB/Cor shifted to higher temperature of 376 and 428 °C, the weight loss of the coating for the Ru/TiO/PB/Cor catalyst was improved and decreased to 6.5 wt%. Also, the as-obtained Ru/TiO/PB/Cor catalyst exhibited ideal catalytic properties for the abatement of ethyl acetate and ethanol, indicating that the catalyst can meet the demand for the treatment of actual multi-component industrial gas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977393PMC
http://dx.doi.org/10.1039/d2ra07823fDOI Listing

Publication Analysis

Top Keywords

monolithic catalysts
12
species supported
8
ru/tio/pb/cor catalyst
8
ru-based monolithic
4
catalysts
4
catalysts catalytic
4
catalytic oxidation
4
oxidation chlorinated
4
chlorinated volatile
4
volatile organic
4

Similar Publications

Selective Adsorption of Chlorine Species on RuO Sites for Efficient Elimination of Vinyl Chloride on the Ru/SnO Catalyst.

Environ Sci Technol

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO (Ru/SnO) was prepared with the lattice matching principle. As RuO and SnO are both rutile phases, Ru species were present as highly dispersed RuO particles on the Ru/SnO catalyst.

View Article and Find Full Text PDF

Under industrial conditions, efficient catalytic oxidation of Chlorinated volatile organic compounds is an important challenge, not only because of the poisonous effect of Chlorinated volatile organic compounds on catalysts, but also because of their high reaction temperature, which has an adverse impact on industrialization. In a recent article ( Ru/CeO ) [1], we developed a strategy for preparing a simple and efficient monolithic catalyst for the catalytic combustion of chlorobenzene. Ru/CeO was loaded on the industrial support cordierite by a Sol-gel method.

View Article and Find Full Text PDF

Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.

View Article and Find Full Text PDF

Self-Supported Porous Carbon Monoliths for Electrocatalytic Hydrogen Evolution in Alkaline Freshwater and Seawater.

Langmuir

December 2024

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Article Synopsis
  • - Developing efficient catalysts for the hydrogen evolution reaction (HER) in seawater electrolysis is key for producing green hydrogen, and carbonized wood (CW) is a promising material due to its sustainable and porous properties.
  • - This study compares the electrocatalytic performance of various types of CW, including carbonized poplar, balsa, fir, and pine, with carbonized poplar demonstrating the best performance due to its larger electrochemically active surface area and functional groups.
  • - The carbonized poplar (PoCW) shows a low overpotential in both alkaline freshwater and seawater and maintains durability over 100 hours, highlighting the potential of metal-free, CW-based electrodes for effective hydrogen production.
View Article and Find Full Text PDF

Ground-level ozone pollution poses significant risks to ecosystems and human health and requires effective control measures. This study focused on the monolithic ozone degradation catalyst based on powdered α-MnO and comprehensively investigated its catalytic performance, moisture resistance, and stability. The monolithic catalyst achieved the optimal catalytic activity with an ozone conversion rate of 99% after being calcined at 400 °C for 3 hours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!