This study set out to determine the key metabolite changes underlying the pathophysiology of severe preeclampsia (PE) using metabolic analysis. We collected sera from 10 patients with severe PE and from 10 healthy pregnant women of the same trimester and analyzed them using liquid chromatography mass spectrometry. A total of 3,138 differential metabolites were screened, resulting in the identification of 124 differential metabolites. Kyoto encyclopedia of genes and genomes pathway analysis revealed that they were mainly enriched in the following metabolic pathways: central carbon metabolism in cancer; protein digestion and absorption; aminoacyl-transfer RNA biosynthesis; mineral absorption; alanine, aspartate, and glutamate metabolism; and prostate cancer. After analysis of 124 differential metabolites, 2-hydroxybutyric acid was found to be the most critical differential metabolite, and its use allowed the differentiation of women with severe PE from healthy pregnant women. In summary, our analysis revealed that 2-hydroxybutyric acid is a potential key metabolite for distinguishing severe PE from healthy controls and is also a marker for the early diagnosis of severe PE, thus allowing early intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975955PMC
http://dx.doi.org/10.1515/biol-2022-0572DOI Listing

Publication Analysis

Top Keywords

2-hydroxybutyric acid
12
key metabolite
12
severe healthy
12
differential metabolites
12
severe preeclampsia
8
healthy pregnant
8
pregnant women
8
124 differential
8
analysis revealed
8
severe
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!