Fracture phenomena in soft materials span multiple length and time scales. This poses a major challenge in computational modeling and predictive materials design. To pass quantitatively from molecular to continuum scales, a precise representation of the material response at the molecular level is vital. Here, we derive the nonlinear elastic response and fracture characteristics of individual siloxane molecules using molecular dynamics (MD) studies. For short chains, we find deviations from classical scalings for both the effective stiffness and mean chain rupture times. A simple model of a nonuniform chain of Kuhn segments captures the observed effect and agrees well with MD data. We find that the dominating fracture mechanism depends on the applied force scale in a nonmonotonic fashion. This analysis suggests that common polydimethylsiloxane (PDMS) networks fail at cross-linking points. Our results can be readily lumped into coarse-grained models. Although focusing on PDMS as a model system, our study presents a general procedure to pass beyond the window of accessible rupture times in MD studies employing mean first passage time theory, which can be exploited for arbitrary molecular systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979691 | PMC |
http://dx.doi.org/10.1021/acs.macromol.2c02576 | DOI Listing |
Molecules
December 2024
Aix Marseille Univ, CNRS, Chemistry Department, Institute of Radical Chemistry (ICR), 13397 Marseille, France.
Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface-volume ratio, which reinforces the interactions between the particles and the polymer matrix. These interactions depend on many factors such as the shape, size and dispersion of the nanoobjects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania.
The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil.
Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.
View Article and Find Full Text PDFBiofabrication
December 2024
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
The specific spatiotemporal distribution of diverse components in tumor microenvironment plays a crucial role in the cancer progression.three-dimensional (3D) tumor models with polydimethylsiloxane (PDMS) based microfluidic platform have been applied as useful tool to conduct studies from cancer biology to drug screening. However, PDMS has not been welcomed as a standardized commercial application for preclinical screening due to inherent limitations in scale-up production and molecule absorption.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!