Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the growing importance of synthesizing active pharmaceutical ingredients (APIs) in enantiomerically pure form, new methods of asymmetric synthesis are being sought. Biocatalysis is a promising technique that can lead to enantiomerically pure products. In this study, lipase from , immobilized on modified silica nanoparticles, was used for the kinetic resolution (via transesterification) of a racemic mixture of 3-hydroxy-3-phenylpropanonitrile (3H3P), where the obtaining of a pure (S)-enantiomer of 3H3P is a crucial step in the fluoxetine synthesis pathway. For additional stabilization of the enzyme and enhanced process efficiency, ionic liquids (ILs) were used. It was found that the most suitable IL was [BMIM]Cl; a process efficiency of 97.4 % and an enantiomeric excess (ee%) of 79.5 % were obtained when 1 % (w/v) of that IL in hexane was applied and the process was catalyzed by lipase immobilized on amine-modified silica.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974985 | PMC |
http://dx.doi.org/10.1016/j.csbj.2023.02.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!