A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glenoid Bone Loss Pattern in Patients With Posterior Instability Versus Anterior Instability: A Matched Cohort Study. | LitMetric

Background: The pattern of glenoid bone loss (GBL) in anterior glenohumeral instability is well described. It was recognized recently that posterior GBL after instability has a posteroinferior pattern.

Purpose/hypothesis: The purpose of this study was to compare GBL patterns in a matched cohort of patients with anterior versus posterior glenohumeral instability. The hypothesis was that the GBL pattern in posterior instability would be more inferior than the GBL pattern in anterior instability.

Study Design: Cohort study; Level of evidence, 3.

Methods: In this multicenter retrospective study, 28 patients with posterior instability were matched with 28 patients with anterior instability by age, sex and number of instability events. GBL location was defined using a clockface model. Obliquity was defined as the angle between the long axis of the glenoid and a line tangent to the GBL. Superior and inferior GBL were measured as areas and defined relative to the equator. The primary outcome was the 2-dimensional characterization of posterior versus anterior GBL. The secondary outcome was a comparison of the posterior GBL patterns in traumatic and atraumatic instability mechanisms in an expanded cohort of 42 patients.

Results: The mean age of the matched cohorts (n = 56) was 25.2 ± 9.87 years. The median obliquity of GBL was 27.53° (interquartile range [IQR], 18.83°-47.38°) in the posterior cohort and 9.28° (IQR, 6.68°-15.75°) in the anterior cohort ( < .001). The mean superior-to-inferior bone loss ratio was 0.48 ± 0.51 in the posterior cohort and 0.80 ± 0.55 ( = .032) in the anterior cohort. In the expanded posterior instability cohort (n = 42), patients with traumatic injury mechanism (n = 22), had a similar GBL obliquity compared to patients with an atraumatic injury mechanism (n = 20) (mean, 27.73° [95% CI, 20.26°-35.20°] vs 32.20° [95% CI, 21.27°-43.14°], respectively) ( = .49).

Conclusion: Posterior GBL occurred more inferiorly and at an increased obliquity compared with anterior GBL. This pattern is consistent for traumatic and atraumatic posterior GBL. Bone loss along the equator may not be the most reliable predictor of posterior instability, and critical bone loss may be reached more rapidly than a model of loss along the equator may predict.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974616PMC
http://dx.doi.org/10.1177/23259671221146559DOI Listing

Publication Analysis

Top Keywords

bone loss
20
posterior instability
20
posterior gbl
16
gbl
15
posterior
13
instability
12
gbl pattern
12
anterior
9
cohort
9
glenoid bone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!