We derive streamlined mean field variational Bayes algorithms for fitting linear mixed models with crossed random effects. In the most general situation, where the dimensions of the crossed groups are arbitrarily large, streamlining is hindered by lack of sparseness in the underlying least squares system. Because of this fact we also consider a hierarchy of relaxations of the mean field product restriction. The least stringent product restriction delivers a high degree of inferential accuracy. However, this accuracy must be mitigated against its higher storage and computing demands. Faster sparse storage and computing alternatives are also provided, but come with the price of diminished inferential accuracy. This article provides full algorithmic details of three variational inference strategies, presents detailed empirical results on their pros and cons and, thus, guides the users on their choice of variational inference approach depending on the problem size and computing resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983814 | PMC |
http://dx.doi.org/10.1080/10618600.2022.2096622 | DOI Listing |
ACS Nano
January 2025
Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada.
Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Statistics, University of Oxford, Oxford, UK.
The rapid growth of modern biobanks is creating new opportunities for large-scale genome-wide association studies (GWASs) and the analysis of complex traits. However, performing GWASs on millions of samples often leads to trade-offs between computational efficiency and statistical power, reducing the benefits of large-scale data collection efforts. We developed Quickdraws, a method that increases association power in quantitative and binary traits without sacrificing computational efficiency, leveraging a spike-and-slab prior on variant effects, stochastic variational inference and graphics processing unit acceleration.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China.
The limited imaging depth of optical endoscope restrains the identification of tissues under surface during the minimally invasive spine surgery (MISS), thus increasing the risk of critical tissue damage. This study is proposed to improve the accuracy and effectiveness of automatic spinal soft tissue identification using a forward-oriented ultrasound endoscopic system. Total 758 ex-vivo soft tissue samples were collected from ovine spines to create a dataset with four categories including spinal cord, nucleus pulposus, adipose tissue, and nerve root.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Information Technology, Benazir Bhutto Shaheed University Lyari, Karachi, 75660, Pakistan.
Deep learning-based medical image analysis has shown strong potential in disease categorization, segmentation, detection, and even prediction. However, in high-stakes and complex domains like healthcare, the opaque nature of these models makes it challenging to trust predictions, particularly in uncertain cases. This sort of uncertainty can be crucial in medical image analysis; diabetic retinopathy is an example where even slight errors without an indication of confidence can have adverse impacts.
View Article and Find Full Text PDFExisting emotion-driven music generation models heavily rely on labeled data and lack interpretability and controllability of emotions. To address these limitations, a semi-supervised emotion-driven music generation model based on category-dispersed Gaussian mixture variational autoencoders is proposed. Initially, a controllable music generation model is introduced, which disentangles and manipulates rhythm and tonal features, enabling controlled music generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!